THE OEDOGONIACEAE

A MONOGRAPH

Including all the Known Species of the Genera Bulbochaete, Oedocladium and Oedogonium

By

LEWIS HANFORD TIFFANY, M. Sc., Ph. D.

Associate Professor of Botany

The Ohio State University

1930

PUBLISHED BY THE AUTHOR

COLUMBUS, OHIO
The Spahr & Glenn Company
printers
Columbus, Ohio
FOREWORD.

For many years the only available keys to the Freshwater Algae of North America were those published by Francis Wolle about 1887. These were in larger part transcriptions of European descriptions often based on a single collection. Moreover, at that time it was a common practice to name specimens on the basis of vegetative characters or of immature reproductive structures. Consequently, many of the records are erroneous and many others are questionable.

In 1909 Frank S. Collins published a monograph of the Green Algae of North America. He not only added many species and records to the North American algal flora, but also corrected many of the previous errors in nomenclature and in the locality records, and brought the taxonomy of the green algae in America into harmony with the best usage in Europe. Collins' keys stimulated a wide interest in the green algae in this country, and led to the publication of many local lists and papers describing new species.

In the determination of algae, however, descriptions without plates are frequently difficult to interpret, and the greatest need of American students today is a series of illustrated monographs of the various families and orders.

The world wide distribution of many of the freshwater algae, and the possibility that a species described from Australia may be found in Ohio has made it desirable that the monographs should attempt to cover all the described species. Too often the literature of a group is widely scattered and many of the papers are in obscure journals quite inaccessible to the average student.

In 1900 Karl E. Hirn of Helsingfors, Finland, published in Latin and German a monograph of the Oedogoniaceae that has been a model and inspiration for all algologists, but this volume and its supplement are now difficult to secure. Moreover many new species have been described and the descriptions by Hirn in many cases have been emended. It has seemed therefore very desirable to publish descriptions and keys to all
the known species of Oedogoniaceae in English. Dr. Tiffany’s extensive acquaintance with American collections, and the species found in European exsiccati over a period of fifteen years have given him an excellent foundation for a critical view of the group.

It is the hope of the Department of Botany at The Ohio State University that this monograph will be followed in the near future by a monograph of the Zygnemales, and subsequently of other groups of the filamentous algae.

Edgar N. Transeau.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Acknowledgments</td>
<td>9</td>
</tr>
<tr>
<td>II. Introduction</td>
<td>11</td>
</tr>
<tr>
<td>III. Cell Structure, Reproduction, and Life History</td>
<td>12</td>
</tr>
<tr>
<td>IV. Periodicity and Distribution</td>
<td>22</td>
</tr>
<tr>
<td>V. Taxonomic and Systematic Treatment</td>
<td>24</td>
</tr>
<tr>
<td>1. The Family Oedogoniaceae</td>
<td>27</td>
</tr>
<tr>
<td>a. Description</td>
<td>27</td>
</tr>
<tr>
<td>b. Key to the Genera</td>
<td>27</td>
</tr>
<tr>
<td>2. The Genus Bulbochaete</td>
<td>27</td>
</tr>
<tr>
<td>a. Description</td>
<td>27</td>
</tr>
<tr>
<td>b. Key to the Species, Varieties, and Forms</td>
<td>28</td>
</tr>
<tr>
<td>c. The Species, Varieties, and Forms</td>
<td>30</td>
</tr>
<tr>
<td>3. The Genus Oedocladium</td>
<td>51</td>
</tr>
<tr>
<td>a. Description</td>
<td>51</td>
</tr>
<tr>
<td>b. Key to the Species</td>
<td>51</td>
</tr>
<tr>
<td>c. The Species</td>
<td>51</td>
</tr>
<tr>
<td>4. The Genus Oedogonium</td>
<td>53</td>
</tr>
<tr>
<td>a. Description</td>
<td>53</td>
</tr>
<tr>
<td>b. Key to the Species, Varieties, and Forms</td>
<td>53</td>
</tr>
<tr>
<td>c. The Species, Varieties, and Forms</td>
<td>65</td>
</tr>
<tr>
<td>d. Species Imperfectly Known</td>
<td>159</td>
</tr>
<tr>
<td>VI. Table of Synonyms: Bulbochaete</td>
<td>173</td>
</tr>
<tr>
<td>VII. Table of Synonyms: Oedogonium</td>
<td>174</td>
</tr>
<tr>
<td>VIII. Bibliography</td>
<td>177</td>
</tr>
<tr>
<td>IX. Exsiccateae</td>
<td>184</td>
</tr>
<tr>
<td>X. Index</td>
<td>185</td>
</tr>
<tr>
<td>XI. Plates</td>
<td>189</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS.

In attempting a complete report of a group as large as the Oedogoniaceae, one encounters numerous difficulties. The literature is bulky and in many languages. Type specimens are unavailable in some cases. Thanks, however, to the very careful work of Hirn (1900), many forms are perpetuated by extremely accurate and representative drawings. Some of the difficulties are matched, on the other hand, by the relative constancy of the characteristics of the species as they occur in aquatic habitats the world over. Many species appear in the writer's own collections.

It is almost impossible to give full acknowledgment to all who have assisted in making this monographic report possible. The writer has examined the material distributed in the Phycophtheca Borealis-Americana and important collections generously supplied by the following: Prof. E. N. Transeau, Ohio State University; the late Prof. O. Nordstedt; Prof. R. B. Wylie, Iowa State University; Prof. G. E. Nichols, Yale University; Prof. F. E. Lambert, Tufts College; Prof. W. R. Taylor, University of Pennsylvania; Prof. C. J. Chamberlain, University of Chicago; Prof. I. F. Lewis, University of Virginia; Mr. G. H. Wailes, British Columbia; Prof. Alma B. Ackley, College of the City of Detroit; Prof. B. B. McInteer, University of Kentucky.

Data on distribution of the genus outside of the United States other than that secured from the literature have been supplied by Mr. G. H. Wailes, British Columbia; Prof. O. Borge, Stockholm; Prof. K. M. Strom, Oslo; Prof. H. Skuja, Riga; Prof. N. N. Woronichin, Leningrad.

The section on Bulbochaete in this report has previously appeared, in substance, in the Transactions of the American Microscopical Society (Tiffany 1928). The text and plates dealing with that genus are incorporated herewith with the permission of the Society, kindly extended through its Secretary, Professor H. J. Van Cleave. My thanks are due Professor I. F. Lewis, University of Virginia, for the loan of his unpublished manuscript on the genus Oedocladium. Professor Lewis is
responsible for the emended description of the genus and for three of the four species now known (two are previously undescribed).

I am particularly indebted to my colleague, Professor E. N. Transeau, who has very graciously placed at my disposal all his notes on Oedogoniaceae recorded during his long study of freshwater algae in the United States. He has offered many valuable suggestions during the fifteen years this study has been in progress.

L. H. T.

Department of Botany, The Ohio State University, Columbus, Ohio, January 2, 1930.
THE OEDOGONIACEÆ

Introduction.

Perhaps the most sharply circumscribed and clearly delimited group among the green algae is the family Oedogoniaceae. The members of its three genera—Bulbochaete, Oedocladium, and Oedogonium—are not only easily separable from other filamentous algae but also readily distinguishable from each other. The rather rigid vegetative cells, the prominent reproductive organs, the large zoospores each with a crown of cilia at the anterior end, the reticulate chloroplasts, and the attached habit are characteristics of the family.

The filaments of Bulbochaete are branched and composed of cells each bearing at its enlarged upper extremity a laterally placed hair or seta. The setæ are bulbous at the base, hollow, and frequently greatly attentuated, sometimes reaching a millimeter in length. Oedocladium is also branched but is devoid of hairs. Species of Oedogonium are unbranched and in common with Bulbochaete possess holdfast cells that provide attachment for the plants. *Oedocladium hazenii* and species of both Oedogonium and Bulbochaete are aquatic. The remaining three species of Oedocladium are terrestrial.

The family Oedogoniaceae was established by De Bary in 1854; the genus Bulbochaete by C. A. Agardh in 1817; Oedocladium by Stahl in 1891; and Oedogonium by Link in 1820. The most noteworthy contributors to the taxonomy of the group, other than those above, have been Pringsheim, Wittrock, Nordstedt, and Hirn. Since 1900 a number of algologists have added to our knowledge of the family by descriptions of new species, further notes on life histories, and data on geographic distribution. A list of such workers includes Hirn and Hallas from Finland; William West, G. S. West, Fritsch, Carter, and Hodgetts from England; Borge from Sweden; Wille and Strom from Norway; Pascher and Heering from Germany; Skuja from Latvia; Collins, Transeau, Lewis, and Tiffany from the United States. There have been many other

In the Index the name of each new species, variety, or form is preceded by an asterisk.
students of this algal family, and some of their names are found in the bibliography near the end of this monographic report.

Some idea of the relative sizes of the three genera of the Oedogoniaceae may be gained by a numerical recital of the composition of each. The genus Bulbochaete is composed of 48 species, 15 varieties, and 7 forms, with 3 additional species having incomplete descriptions. In Oedogonium there are 195 species, 76 varieties, and 38 forms; in addition there are 41 species and 3 varieties incompletely known. Oedocladium, by far the smallest, has only 4 species recorded to date.

Although an Oedogonium, a Bulbochaete, or even an Oedocladium can be recognized on vegetative characters alone, the identification to species is impossible, except in a few cases, without reproductive organs. Such unusual forms as Oe.* undulatum, B. horrida, Oe. nodulosum, or Oe. reinschii are perhaps always recognizable in vegetative states, but such species are few in number.

The comprehensive reports of Pringsheim (1858), Wittrock (1874), Hirn (1900, 1906), and Heering (1914) are not readily available to many students of the algæ, and their points of emphasis have been necessarily European. The early American accounts of the Oedogoniaceae by Wood (1872) and by Wolle (1887) are quite unreliable. The work of Collins (1909, et seq.) made available much European literature and was the first American publication on the green algæ that was really trustworthy. Perhaps to Collins should go the credit for the initiation of real interest in freshwater algæ in North America. Unfortunately his papers were inadequately illustrated. It is hoped that furnishing a complete English treatise of the family Oedogoniaceae, including in addition to the taxonomic consideration, a discussion of the more important features of structure, reproduction, and distribution, will not only aid the student in the study of these common algæ but will stimulate added interest in algology generally.

Cell Structure and Reproduction.

The cell wall of the Oedogoniaceae exhibits a rigidity not common to other filamentous Chlorophyceæ. The heavy cellulose layer is covered peripherally with pectose, and upon

The abbreviation Oe. as used in this paper refers to the genus Oedogonium, and not to Oedocladium. When the latter is meant, the abbreviation is O.
this is found in varying amounts another compound, resembling chitin. In Bulbochaete and Oedogonium the latter substance does not appear on the holdfast cell or dwarf male at the points of attachment. The cell may frequently be so heavily incrusted with lime that identification is not possible in that condition. The addition of warm lactic acid removes the calcium carbonate without undue change to the filament. Epiphytic small algae, including species of Oedogonium and Bulbochaete, are commonly found attached to the rigid filaments. Fungal parasites, particularly certain Chytridiales, attack the plants both internally and externally.

The vegetative cells are uninucleate with an elaborate parietal, reticulate chloroplast having one to many scattered pyrenoids. The chloroplast is quite variable in form, the network being considerably attenuated or hardly visible in the compact cylindrical mass (Carter, as reported by Fritsch and West, 1927).

A rather peculiar characteristic of the family is the method of division of the vegetative cell which results in the so-called "apical caps." Previous to the actual division there appears a ring-like thickening of the inner wall of the cell near its upper extremity. The growth of this ring ruptures the old wall circularly, and the outer layer of the ring becomes the new piece of cell wall. In the meantime nuclear division is followed by the formation of a cross wall at the middle of the cell, not connected at first with the cylinder. Later the septum assumes a permanent position near the lower part of the ruptured wall. The upper cell thus formed has a wall made up chiefly of the stretched ring, while the wall of the lower cell consists almost wholly of the lower part of the old cell membrane. The upper cell, however, has at its upper extremity a part of the old cell wall which projects slightly, forming the cap. This apical cap is an excellent diagnostic character of the genus Oedogonium, although in some of the smaller species it is difficultly visible; and the number of caps in each cell denotes the number of divisions it has undergone. (Cf. Pl. LXI, figs. 598–600).

In Bulbochaete there is rarely more than one apical cap to each cell, indicating, as will be explained later, that vegetative division in that genus occurs usually but once in a cell. (Cf. Pl. X, fig. 99).

In Oedocladium usually only the terminal cell undergoes division as outlined above for Oedogonium. Intercalary growth
is apparently uncommon. The cap (or successive caps) may remain at the top of the terminal cell (Pl. LXIII, figs. 616 and 617 and 621; Pl. LXI, fig. 602) or be pushed aside, adhering to the side of the filament (Pl. LXII, fig. 611; Pl. LXIII, fig. 622).

The nuclear phenomena accompanying cell division were early investigated by Strasburger (1880) and Klebahn (1892). More recently Tuttle (1910) has compared mitosis in Oedogonium with that seen in higher plants.

A single multiciliate zoospore is formed from the entire contents of a vegetative cell. Rarely a small amount of protoplasm is visible in the old cell after the emergence of the zoospore. The formation and liberation of the zoospore can readily be followed if the plants are brought into a warm room and observed under the microscope. The protoplast of the cell contracts slightly, and near one side appears a colorless area. A circular rent soon appears near the upper extremity of the cell in the vicinity of the apical cap. The mass then passes with a slow steady movement through the opening in the wall, being considerably constricted at the place of exit. Zoospores are formed from any cell of the filament except the holdfast.

Upon release from the cell, the zoospore assumes a spherical or ovoid shape. It is at first surrounded by a thin gelatinous envelope which rather rapidly increases in volume and transparency and finally disappears. At the anterior end of the forming zoospore appears a colorless area, around the base of which occurs the crown of cilia. The zoospore is active for a short time, its movements becoming progressively less and less until it comes to rest. The cilia are absorbed and the clear anterior end becomes the attached part of the holdfast cell (Cf. Pl. X, figs. 84–92). Sometimes growth of the zoospore begins before movement has ceased. Upon germination, repeated cell division occurs in the manner described above, except in those species where the first division does not result in the formation of a ring. In Oedogonium the sporeling thus formed develops into a filament by intercalary growth.

The development of the germinated zoospore in Bulbochaete involves variations that deserve separate mention. The basal cell formed from the germinated zoospore is usually the only one capable of division. as far as the main axis is concerned. In some of the forms with ellipsoid oospores, however, inter-
calary growth has been noted. The first division is of simple type, without a ring formation. The upper part of the cell is separated from the lower by a circular rent, but no new membrane develops between the two parts. As the new wall grows upward, the separated part is pushed to one side as a lid. The upper new cell grows out into a long tubular bristle with a swollen bulbous base. Subsequent divisions occur with the regular ring formation, and each new cell is intercalated between the basal cell and the next one above. The upper cell of each filament is therefore the oldest one. A lateral protrusion of each cell at its apex is cut off, developing into a hair. It is thus seen that the terminal cell bears two hairs, the other cells one each. Nearly every cell of Bulbochaete has two apical faces, one bearing a hair (or a cell of a side branch), the other the next upper cell of the main axis. Every cell of the principal axis of the filament, except the basal one, may cut off by an oblique division a lateral cell which becomes the basal cell for a side branch. By repeated divisions, first of the simple type and subsequent ones with ring formation, as noted above, this secondary basal cell (which of course is the primary basal cell of the side branch) forms the branch. Tertiary branches are formed similarly from the secondary ones, and so on through further branching. The mode of growth of the main axis is thus repeated by the side branches (See Plate X, figs. 93–99).

The germination of a zoospore of Oedocladium is in many respects unlike that of either Oedogonium or Bulbochaete. The first cell formed upon germination develops into (1) the green filament with the rhizoidal cell forming as a branch; or (2) the rhizoidal filament with the chlorophyllose cell as a side branch; or (3) the green filament with the branch cell also green; or (4) a green filament without early branching. (Cf. Pl. LXII, fig. 612; Pl. LXIII, fig. 623). The formation of a branch in Oedocladium occurs by the development of a circular rent in the upper extremity of a vegetative cell, forming an upper short "lid" and a lower, much longer cylindrical piece. Through this rent the protoplasm of the forthcoming daughter branch cell with its initially thin wall protrudes. A new wall separating the branch cell from the cell of the main filament is then developed. This wall is attached to the juncture of the upper extremity of the cylindrical piece of the primary cell and the lower end of the branch cell, on the one hand, and to the
original upper transverse wall of the primary cell, on the other. (Cf. Pl. LXII, figs. 606 and 612; Pl. LXIII, figs. 616 and 623).

Sexual reproduction of a rather advanced order has been observed in most species of the family. The position and relation of the oogonia and antheridia are used as classificatory items in all three genera. If oogonia and antheridia occur on the same filament the plant is *monoeious* (Pl. IX, fig. 69; Pl. XV, fig. 145); if on separate filaments, *dioecious* (Pl. XXXIII, figs. 291 and 292). *Oe. varians, Oe. triplicum*, and perhaps a few others are both dioecious and monoeious. If dioecious, the male filaments may be about equal in size to the female, and the species is *macrandrous* (Pl. XXX, figs. 262 and 263). If the male plants are few-celled, much smaller ("dwarf males" resulting from germinating anidospores) and epiphytic on the female plant, the species is *nannandrous* (Pl. II, fig. 17; Pl. LII, fig. 494). If the dwarf males have arisen from the germination of anidospores liberated from androsporangia occurring on the same filament with the oogonia, the alga is *gynandrosporous* (Pl. V, fig. 37; Pl. LIV, fig. 509; Pl. LXII, fig. 606); if the androsporangia are formed on separate filaments from the oogonia, the alga is *idioandrosporous* (Pl. VII, fig. 53; Pl. XLV, figs. 434 and 435). A few species among the nannandrous sections are both gynandrosporous and idioandrosporous. The dwarf males form on the suffultory cell (Pl. VII, fig. 52; Pl. L, fig. 482), or on the oogonium (Pl. V, fig. 37; Pl. LIV, fig. 508), or rarely scattered on vegetative cells (Pl. XLVII, fig. 458).

In Oedogonium and Oedocladium a single division of a vegetative cell results in an *oogonium* and a *suffultory* ("supporting") cell (Pl. LXIV, figs. 638-640). The latter (in Oedogonium) may by subsequent divisions form a series of oogonia (Pl. LIX, fig. 577). Flat discoid cells resulting from repeated transverse divisions of a vegetative cell are *antheridia* (in the monoeious and macrandrous species) and *androsporangia* (in the nannandrous species). No seriate oogonia are recorded for the species of Oedocladium.

In Bulbochaete oogonia are developed singly, never in series. An oogonium arises by a double division of a vegetative cell which thus results in two suffultory cells. After the first division the septum becomes fixed near the middle of the old sheath-like wall "so that the membrane of the upper segment is formed by a short cylindrical piece of the latter and above
that by the stretching thickening ring which is becoming bulged out, forming the oogonium. A second thickening ring then develops in the median region of the young oogonium followed by a transverse rupture of the wall at this point; the septum formed in connection with this second division lies on a level with the top of the first-formed sheath, so that the supporting-cells are included in the latter. This curious development is responsible for the fact that the wall of the mature Bulbochaete oogonium can nearly always be seen to consist of three pieces.” (West and Fritch 1927, p. 219). (Cf. Pl. LXIV, figs. 641–645.)

If the lower of the two suffultory cells is the longer we speak of the division as supreme, superior, or supramedian, depending upon the relative lengths; if the upper is the longer of the two, the division becomes inframedian, inferior, or basal; if the two are equal in length, the division is median. In some species of Bulbochaete the position of the division is variable and cannot always be depended on as a distinctive diagnostic characteristic. If the two divisions are at right angles to the long axis of the vegetative cell, the oogonium is said to be erect; if one division is oblique, giving one suffultory cell a five-sided, or five-angled, appearance (viewed in optical section), the oogonium is patent. In members of the genus with globose (or nearly so) oogonia, the upper and not the lower suffultory cell is five-angled, while in those with more ellipsoid oogonia the reverse is true. In the latter case the upper cell is quite small, or may not be visible. A patent oogonium is always formed by a division of the basal cell of a side branch, with which may be associated a bulbous hair, an androsporangium, an antheridium, or rarely a vegetative cell. An erect oogonium on the other hand forms from a division of some vegetative cell other than the basal one. In the globose forms of the genus, patent oogonia are common while erect oogonia occur only in a few species. Among the ellipsoid forms both kinds are found. (Pl. LXIV, figs. 641–645).

The oogonium contains a single egg and varies considerably in shape, being largely ellipsoid, ovoid, globose, or some variation of these shapes. It is usually of noticeably larger diameter than the vegetative cell, although in Oe. capillare and in a few others the difference is not great. The oogonium wall is rarely internally ribbed (as in Oe. acrosorum), punctate (as in Oe. minus), plicate (as in Oe. megaporum, Oe. platygynum) or provided with a transversely disposed ring of conical warts (as in Oe. itzigsohntii); in most species it is smooth. The
suffultory cell may be noticeably larger than the other vegetative cells, or of the same diameter (Pl. LXIV, figs. 639-640). The opening in the wall of the oogonium may be a pore, either round and mouth-like, or rimiform, in which case the plant is designated as poriferous. An upper part of the oogonium may separate from a lower part, forming a lid; such species are operculate. The position of the pore as well as that of the operculum is quite constant for the species and is of considerable diagnostic value. The pore may be superior, supramedian, median, inframedian, or inferior. The division of the operculum may in addition to these positions be supreme or basal (infimus). (Pl. LXIV, figs. 624-635).

The oospore results from the development of the fertilized egg and is considered mature upon the formation of a distinct wall. It may or may not fill the oogonium and may be unlike it in shape. The oospore wall is usually three-layered, although occasionally of two layers. The middle or outer layer (it is invariably the latter in Bulbochaete) may be smooth or variously ornamented (See Table I). The kind of ornamentation is widely varied for the different species: pitted, scrobiculate, reticulate, angulate, dentate, areolate, echinate, or longitudinally or spirally ribbed. The ribs may be entire, crenulate, toothed,

TABLE I.

Ready reference to illustrations of the kinds of ornamentations of oospore walls found in the Oedogoniaceae. It will readily be seen, upon examination of the figure, whether it is the middle or outer layer of the oospore wall with ornamentations.

<table>
<thead>
<tr>
<th>Oospore Wall</th>
<th>Species</th>
<th>Plate</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angulate</td>
<td>O. albemarlensis</td>
<td>LXIII</td>
<td>614</td>
</tr>
<tr>
<td>Areolate</td>
<td>Oe. areolatum</td>
<td>XXVIII</td>
<td>248</td>
</tr>
<tr>
<td>Dentate</td>
<td>Oe. cleveanum</td>
<td>XLVI</td>
<td>443</td>
</tr>
<tr>
<td>Echinata</td>
<td>Oe. hystricinum</td>
<td>XLIII</td>
<td>414</td>
</tr>
<tr>
<td>Echinata</td>
<td>Oe. hystrix v. canadense</td>
<td>XLIII</td>
<td>418</td>
</tr>
<tr>
<td>Pitted</td>
<td>Oe. giganteum</td>
<td>XXIX</td>
<td>260</td>
</tr>
<tr>
<td>Reticulate</td>
<td>Oe. dictyosporum</td>
<td>XXVIII</td>
<td>246</td>
</tr>
<tr>
<td>Ribbed</td>
<td>B. imperialis</td>
<td>VIII</td>
<td>64</td>
</tr>
<tr>
<td>Ribbed</td>
<td>B. bullardi</td>
<td>VII</td>
<td>52</td>
</tr>
<tr>
<td>Ribbed</td>
<td>Oe. paucocostatum</td>
<td>XXXII</td>
<td>277</td>
</tr>
<tr>
<td>Ribbed</td>
<td>Oe. crenulatocostatum</td>
<td>XXVIII</td>
<td>240</td>
</tr>
<tr>
<td>Ribbed</td>
<td>Oe. exospirale</td>
<td>XLIV</td>
<td>426</td>
</tr>
<tr>
<td>Smooth</td>
<td>B. angulosa</td>
<td>II</td>
<td>14</td>
</tr>
<tr>
<td>Smooth</td>
<td>Oe. supremum</td>
<td>LIX</td>
<td>573</td>
</tr>
<tr>
<td>Scrobiculate</td>
<td>B. alabamensis</td>
<td>V</td>
<td>38</td>
</tr>
<tr>
<td>Scrobiculate</td>
<td>Oe. tiffanti</td>
<td>XXX</td>
<td>261</td>
</tr>
</tbody>
</table>
and variously anastomosate. The color of the oospore changes with age from green to brown (or yellowish-brown) or red.

The oospore upon liberation from the rest of the filament by disintegration of the vegetative and ogonial cells sinks to the bottom of the pond or other body of water, or lodges on perennial aquatic macrophytes, or as in the terrestrial species of Oedocladium lies in the damp earth. After a period of rather prolonged dormancy, which apparently may vary from a few months to a few years, it begins to grow. Although the data have been secured for a few species only, it is the usual occurrence for the contents of the oospore to divide and form four zoospores at germination (Pl. X, figs. 78-83; Pl. LXIV, figs. 646-647). Upon their liberation from the old oospore wall, the zoospores swim about for a time, come to rest, and germinate into new filaments, precisely in the same manner as those produced directly from the vegetative cell. The reserve food in the oospore is a fatty oil dissolved in a reddish-brown pigment. The oospore is considered the diploid structure in the life history, the remainder of the plant being haploid.

The antheridium of the monoecious and dioecious-macrandrous species is derived from the division of a vegetative cell, the cross wall arising near the upper part of the cell. If no more divisions occur, we have a single antheridium, often designated as unicellular (Pl. XIV, fig. 136). Subsequent divisions result in a series of antheridia (2 to 45), termed multicellular (Pl. XIII, fig. 125). In the monoecious species the antheridia may be near the oogonium (epigynous, subepignous, hypogynous, etc.) or scattered at some distance from the oogonium (Pl. XV). In the dioecious-macrandrous species the occurrence of seriate antheridia often results in considerable distortion of the filament, particularly if apically located (Pl. XVI, fig. 153). In Bulbochaete the antheridium may arise (as in the development of the oogonium) by a horizontal division of the vegetative cell, resulting in an erect antheridium (Pl. IX); if the division is oblique, the antheridium is part of a side branch terminated by a bristle: a patent antheridium (Pl. IX). Antheridia of Oedocladium usually occur on special branches, formed as in Oedogonium.

The contents of each antheridium produces one sperm, or as in most species, two sperms. The division of the antheridium when two sperms are formed is either horizontal, one lying superimposed on the other (Pl. XV, fig. 145); or vertical, the
sperms lying side by side (Pl. XX, fig. 182). In the dwarf males the division is always horizontal. The sperms look like small zoospores and are liberated in the same manner from the filament. After swimming actively for some time, the sperm enters the opening of the oogonium with subsequent fertilization of the egg and production of the oospore.

The formation of the antheridia in the dioecious-nannandrous species involves the production of androsporangia, the development of which is practically identical with that of the antheridia. The androsporangia may be developed singly or seriately (Pl. V, fig. 37; Pl. LV, fig. 528; Pl. XLV, fig. 434). The entire contents of the androsporangium produces a single androspore (Pl. LXII, fig. 606), a spore that superficially resembles a sperm or zoospore in form, in manner of liberation from its sporangium (androsporangium), and in activity. Upon coming to rest, however, it germinates and produces a short filament known as the dwarf male, or nannandrium (Pl. LXIV, fig. 645D). This germination of the androspore occurs on the oogonium or suffultory cell, or rarely on scattered vegetative cells.

Division of the germinated androspore results in a lower non-reproductive stipe (holdfast cell) and an upper small cell, the antheridium (Pl. XLVI, fig. 443 A and S). Subsequent divisions of either stipe or antheridium produce additional antheridia (2 to 4) (Pl. XLVI, fig. 448). If merely an inner partition is formed, the antheridium is internal and single (Pl. LI, fig. 486); if the customary ring-formation takes place, the antheridium is termed external (Pl. LX, fig. 584). The dwarf males are rarely unicellular (Pl. LIII, fig. 505), and the stipe, though usually one-celled, may be few-celled (Pl. XLVII, fig. 459). Two sperms are normally formed in each antheridium by a transverse division of its contents. The basal cell of the dwarf male, formed as noted above, is usually an elongated, either simple or slightly lobed holdfast.

The basal cell of the filament, resulting as noted previously from the germinating zoospore, is most frequently elongated (Pl. LXIV, fig. 637). The attached lower end may be simple or much lobed. In some species the developing basal cell may be flattened into a subhemispherical cell or rarely appear nearly spherical (Pl. LXIV, fig. 636). The smaller species remain attached throughout almost their entire life history. The larger ones usually become detached and sometimes are
found in considerable mats on the surface of the water. There is no holdfast cell in Oedocladium.

In many of the larger species of the genus Oedogonium, in particular, and rarely in Bulbochaete the protoplast of the cell may form ovoid, ellipsoid, or irregularly shaped aplanospores. In the terrestrial species of Oedocladium resting cells or "akinetes" occur on the rhizoidal filaments. They are in reality few-celled side branches with swollen cells containing reserve foods. Similar reserves sometimes accumulate in the vegetative cells and can thus endure prolonged desiccation (Stahl 1891). Such cells upon subsequent growth ("germination") may produce new plants.

There has been considerable speculation regarding the relationship between the macrandrous and nannandrous species of the Oedogoniaceae. Hirn (1900) and West (1912a) are of the opinion that dwarf males of the nannandrous species (at least of Oedogonium) arose by the reduction and greater specialization of the zoospores normally producing the antheridial filaments of the macrandrous forms. They would assume as a beginning that the monoecious filaments as well as the zoospores are hermaphroditic. Differentiation of zoospores, some producing antheridial filaments only and others producing oogonial filaments only, gave rise to the dioecious, macrandrous species. Small male filaments of such plants as Oe. fonticola or Oe. verrucosum perhaps represent intermediate steps in further reduction and specialization leading to the dwarf male, epiphytic on or near the oogonium. Schaffner (1927) regards the androspores as having been derived phylogenetically from original sperms and as retaining sexuality to some degree; i.e., they react toward the oogonium or suffultory cell sufficiently to lodge there, but not sufficiently to fuse with the egg. The dwarf male is thus formed parthenogenetically from an androspore. Pascher (1907) on the other hand states that the nannandrous species are not derived from the macrandrous species.

The numerical composition of the three genera of Oedogoniaceae based on the nature of the sexual reproduction in the species presents an interesting comparison. In the genus Bulbochaete 42 species, 2 varieties, and 1 form are dioecious, nannandrous; 6 species, 2 varieties, and 1 form are monoecious; no dioecious, macrandrous species are now known.
In Oedocladium 3 species are monoecious and 1 dioecious, nannandrous. In the large genus Oedogonium 61 species, 15 varieties, and 8 forms are monoecious; 56 species, 25 varieties, and 11 forms are dioecious, macrandrous; and 77 species, 36 varieties, and 19 forms are dioecious, nannandrous. Oe. varians and Oe. trioicum are known to be both monoecious and dioecious. The above summary does not take into account any members of the Oedogoniaceae with incomplete descriptions.

Distribution and Periodicity.

Species of Bulbochaete and of Oedogonium are widely distributed in freshwater, the world over. Oedocladium is so far reported only from the eastern United States and from

<table>
<thead>
<tr>
<th></th>
<th>North America</th>
<th>South America</th>
<th>Europe</th>
<th>Asia</th>
<th>Africa</th>
<th>Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulbochaete</td>
<td>38</td>
<td>15</td>
<td>49</td>
<td>11</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Oedocladium</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oedogonium</td>
<td>205</td>
<td>77</td>
<td>189</td>
<td>49</td>
<td>45</td>
<td>35</td>
</tr>
</tbody>
</table>

Germany; three of the species are terrestrial, growing on wet mud, and the fourth is aquatic. Hirn (1900) reports Oe. capillare, Oe. oblongum, Oe. pluviale, and B. rhadinospora var. litoralis from brackish waters of Europe. In a vegetative state Oedogonium is known as a part of the red and yellow snow of the Orkneys (Fritsch 1912). Species of both Bulbochaete and Oedogonium have been collected at considerable elevations in alpine regions, usually however not in fruiting condition.

Without distinguishing among species, varieties, and forms, the preceding table (Table II) shows the distribution of all members of the Oedogoniaceae by continents. Purely as a matter of convenience, Australia is used to include not only that continent but also the nearby groups of islands of New Zealand, Melanesia, and Malaysia.

Data from the North Central States of the United States (Tiffany and Transeau 1927) indicate that most species of
Oedogonium and Bulbochaete grow in small permanent bodies of water rather than in lakes. The order of importance of algal habitats in this region of the United States for these two genera is: permanent ponds, lakes, temporary ponds, streams, and stream oxbows. Nearly 80% of the fruiting records for Oedogonium come from forms collected in the permanent ponds and the lakes. Streams are relatively poor habitats for fruiting species in spite of the prominent holdfast cells of the filaments. (See Table III).

TABLE III.

Data showing relative importance of Oedogonium habitats in the North Central States.

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Number of Records</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent Ponds</td>
<td>603</td>
<td>54%</td>
</tr>
<tr>
<td>Lakes</td>
<td>254</td>
<td>23%</td>
</tr>
<tr>
<td>Temporary Ponds</td>
<td>172</td>
<td>15%</td>
</tr>
<tr>
<td>Streams</td>
<td>65</td>
<td>6%</td>
</tr>
<tr>
<td>Stream Oxbows</td>
<td>20</td>
<td>2%</td>
</tr>
<tr>
<td>Total</td>
<td>1114</td>
<td>100%</td>
</tr>
</tbody>
</table>

The above table gives the relative importance of Oedogonium habitats in the North Central States for the 1114 records. Nearly 100 records for the genus Bulbochaete show a very similar distribution among habitats in the same region.

Periodicity as applied to Oedogonium and Bulbochaete has been studied by Fritsch and Rich (1913), Hodgetts (1921), and Tiffany and Transeau (1927). It has been shown that the species of these genera produce reproductive structures at rather definite seasons of the year. The particular months of maximal sexual reproduction vary with the species, the geographical location, and the length of the growing season. The smaller forms as a rule have a short vegetative phase and fruit early in the growing season; the larger forms have usually a longer vegetative period and fruit later in the growing season. In north central United States maximal sexual reproduction is reached in May and in July (see text fig. 1) both in the annuals and perennials. Many species reach a second maximum in October, which is doubtless the development of a second generation.
An explanation of such periodicity in this algal group is not satisfactorily complete. It seems quite evident that a certain time—longer in some species than in others—must elapse, during which vegetative development occurs, before sexual reproduction takes place. When this vegetative phase is completed, it is almost impossible to prevent fruiting, except in extremes of temperature, very inadequate light, or toxic water. Hodgetts (1921) finds in observations on a small pond of Britain that there is some correlation between abundance of Oedogonium and (1) higher temperature and (2) competition with other algae. We need data indicating the degree of

![Text Fig. 1](image)

Text Fig. 1. Number of fruiting records each month for the genus Oedogonium, showing periods of maximum sexual reproduction.

relationship between algal growth and reproduction, on the one hand, and intensity and quality of light, mineral composition of the water, and hydrogen ion concentration, on the other.

Zooplankton production may occur at practically any time before the formation of oospores. The germination of the zoospores produced directly from the vegetative cells accounts in large measure for the number of individual filaments of a given species found occupying a particular habitat.

Taxonomic Consideration.

In working through a group as large as the Oedogoniaceae one finds it quite difficult to pass on the validity of some species. Such decisions, while always influenced to some extent by
personal interpretations, must rest upon one’s knowledge of all species and their variations.

The ultimate criterion must be the constancy of such characteristics as methods of reproduction, size (within limits), shape of cells, opening of oogonia. How much are all these altered by ecological conditions of the body of water in which the algae are growing? Unfortunately our data here are far from complete. When one finds a combination of the same characteristics in a given alga year after year in various habitats, one can be reasonably sure of the constancy of the species.

If an alga occurs year after year in the same habitat with a known species, differing in one or more morphological characteristics but evidently closely related to the type, it should be classed as a “variety.” As an example, the robust variety (majus) of Oe. grande has been collected with the type in nearly all collections from the United States. Such differences can hardly be accounted for on the basis of environmental influences.

The category “form” should be regarded as a temporary disposition only. If an alga varies from the description of a given species and has been seen only once or twice, it is hardly possible to know whether the variation is constant or merely an ecological variation. If the form occurs with the type and is found on several occasions to maintain its morphological variation, it should be raised to varietal rank. A “form” then should be retained only when the data are insufficient to pass on the constancy of the variations noted in the description.

In the identification of members of the three genera—Bulbochaete, Oedogonium, and Oedocladium—and in the use of the keys to the species certain terminology is necessary to be able to differentiate among the species. The preceding pages have been written with the hope of elucidating such terminology and at the same time giving a brief introduction to the life history of species of the genera of the Oedogoniaceae.

Keys to plant genera and species have not always been distinguished from synopses. It seems to the author that a key is merely an arrangement of characteristics, by which through proper manouevering, an “unknown” becomes a “known.” A key has sometimes been defined as a scientific puzzle made by one expert to disturb another expert. Such keys may be interesting contributions if one already knows the field covered by them, but it is needless to say that the student, or any beginner for that matter, will find scant encouragement in them.
to proceed further with the group concerned. On the other hand, of course, no key to plant forms can be so simple as to preclude the necessity of having a modicum of intelligence regarding scientific terms. Some species are more closely related than are others, and one must exercise judgment in the evaluation of characteristics. One measurement will not suffice, a single oogonium may be a monstrosity, one oospore may be parasitized, and a single vegetative cell may be far from typical. The keys of the following pages have been constructed in as simple a fashion as possible with the particular aim of enabling the student of the group to name his collection.

It is very convenient to use the group name *Stephanokontae* proposed by Blackman and Tansley (1902) as a division of the class *Chlorophyceae* and including those forms whose motile reproductive cells have a crown of cilia round the clear anterior end. Quite recently Fritsch (1927) has elevated the *Isokontae* to be synonymous with and to replace *Chlorophyceae* (i.e., the *Chlorophyceae* exclusive of the *Heterokontae*). *Oedogoniales* with its single family *Oedogoniaceae* is further considered by Fritsch as a group division of *Isokontae*.

There is no question but that the Oedogoniales have characteristics of cell wall, cell division, and reproductive structures that separate them as a quite readily distinguishable group. Even Fritsch remarks that they are a "sharply circumscribed group affording but few points of affinity with the other *Isokontae*" (*loc. cit.*, p. 212). It appears to the writer to be to the best interests of taxonomic nomenclature to retain the group name *Stephanokontae* as a division of the *Chlorophyceae*, as noted above.

There is but one order, *Oedogoniales*. The simple or branched filaments are almost invariably attached, at least during a part of their life history, except in Oedocladium. The single family, *Oedogoniaceae*, may be characterized as follows:
OEDOGONIACEAE De Bary

1854, p. 94; Pringsheim 1858, p. 68; Wittrock 1874, p. 6; Hirn 1900, p. 71; Collins 1909, p. 222.

Plants aquatic or terrestrial; filaments simple or branching; cells uninucleate; chloroplast parietal, generally in the form of a reticulum, with one or more pyrenoids; cell division by the rupture of a ring-like thickening on the inner wall of each cell near the apex. Reproduction asexually by multiciliate zoospores, formed singly by the vegetative cells, germinating almost immediately. Reproduction sexually by eggs and sperms in oogonia and antheridia; oogonia single or in groups, arising as a result of division of a vegetative cell, opening by a pore or a lid, through which the sperm may pass; the egg when fertilized becomes the oospore, with a wall of one to three layers, which after a period of rest produces four zoospores. Antheridia either in the same filament as the oogonia or in separate filaments; male filaments approximately the same size as the female, or much smaller ("dwarf males"); dwarf males, arising from the germination of androspores, are epiphytic usually on or near the oogonia, sometimes scattered; sperms one or two in each antheridium.

KEY TO THE GENERA.

1. Filaments unbranched..............................III. Oedogonium (p. 53)
 1. Filaments branched...2
 2. Vegetative cells with laterally placed setae.... I. Bulbochaete (p. 27)
 2. Vegetative cells devoid of setae...................... II. Oedocladium (p. 51)

Genus I. Bulbochaete Agardh

1817, p. XXIX; Pringsheim 1858, p. 71; Wittrock 1874, p. 43; Hirn 1900, p. 321; Collins 1909, p. 266; Tiffany 1928, p. 129.

Filaments usually attached, branched, the branches unilateral; vegetative cells normally widening upwards; basal cell ordinarily the only one capable of division in formation of main axis, first new cell forming a long tubular bristle with swollen bulb-like base, subsequent cells intercalated between basal cell and next one above; rarely division is intercalary; other vegetative cells potential origin for side branches; terminal cell of each branch always furnished with a bristle; oogonium arising by a double division of a vegetative cell.
KEY TO THE SPECIES, VARIETIES, AND FORMS OF BULBOCHAETE.

1. Oogonium 24–27μ in length ... 8. B. minuta
1. Oogonium 27–40μ in length ... 2
1. Oogonium 40–65 (68μ) in length ... 21
1. Oogonium 65–95μ in length .. 52
1. Oogonium 104–108μ in length .. 47. B. imperialis
1. Oogonium not, or imperfectly, known 59
2. Monoecious ... 3
2. Dioecious, nannandrous ... 4
3. Vegetative cells longer than broad 1. B. nana
3. Vegetative cells not longer than broad 2. B. monile
4. Sulfortul1 cells without division ... 5
4. Sulfortul1 cells with division .. 6
5. Oospore wall smooth .. 33. B. doliformis
5. Oospore wall scrobiculate ... 7
6. Division of sulfortul1 cell basal .. 34. B. pygmaea
6. Division of sulfortul1 cell inferior 7
6. Division of sulfortul1 cell inframedian, median, or supramedian† ... 11
6. Division of sulfortul1 cell superior 16
7. Division of sulfortul1 cell supreme 17a. B. polyandria f. notabilis
7. Oospore wall smooth ... 8
7. Oospore wall scrobiculate .. 9
8. Oogonium 34–44×31–38μ .. 7. B. elatior
8. Oogonium 31–37×28–37μ ... 7a. B. elatior f. pumila
9. Vegetative cells 13–17μ ... 10
10. Antheridia exterior ... 7b. B. elatior var. scrobiculata
10. Antheridia interior .. 9a. B. brebissonii var. minor
11. Oospore wall smooth ... 12
11. Oospore wall scrobiculate .. 13
12. Diameter of oogonium 33–38μ .. 14a. B. angulosa f. picta
13. Vegetative cells 10–15μ in diameter 10. B. furberae
13. Vegetative cells 15–20μ in diameter 14
14. Oospore wall nearly smooth to scrobiculate 15
14. Oospore wall scrobiculate to nearly crenulate 11. B. crenulata
15. Vegetative cells 2–3 diameters long 12a. B. tetranevia
15. Vegetative cells 3–5 diameters long 12a. B. intermedia var. depressa
16. Diameter of vegetative cells 10–12μ 16b. B. nordstedtii var. minor
16. Diameter of vegetative cells 14–22μ 17
17. Vegetative cells 11–2 diameters long 15. B. borealis
17. Vegetative cells 2–5 diameters long 18
18. Gynandrosporous .. 19
18. Idioandrosporous .. 20
20. Vegetative cells 15–20×45–100μ .. 17. B. polyandria
20. Vegetative cells 17–22×54–88μ .. 17a. B. polyandria f. notabilis
21. Vegetative cells more than 12μ in diameter 22
22. Monoecious .. 23
22. Dioecious, nannandrous ... 29
22. Reproductive structures imperfectly known 49. B. brebiflora
23. Pore of oogonium less than 5μ wide 24
23. Pore of oogonium more than 5μ wide 3. B. breviflora
24. Vegetative cells 1–11/2 diameters long 25
24. Vegetative cells 11/2–2 diameters long 26
25. Oogonium 24–28μ in diameter .. 4. B. basispora
25. Oogonium 28–34μ in diameter .. 2a. B. monile var. robusta
† Some variations of B. nordstedtii and B. polyandria may be sought here.
26. Oogonium regularly ellipsoid .. 5. B. debaryana
26. Oogonium cylindric to oblong-ellipsoid 27
27. Length of oogonium 40–48μ ... 6a. B. mirabilis f. immersa
27. Length of oogonium 47–58μ 6b. B. mirabilis var. gracilis
28. Diameter of vegetative cells 15–20μ 29
29. Oospore wall smooth .. 30
29. Oospore wall scrobiculate .. 32
29. Oospore wall reticulate-scrobiculate 18. B. gigantea
30. Oospore wall ribbed .. 41
30. Division of suffultory cell basal 19. B. diamesandria
30. Division of suffultory cell median or nearly so 31
30. Division of suffultory cell superior 22a. B. sessilis f. glabra
31. Oogonium about 46×44μ ... 20. B. elachistandria
32. Diameter of oogonium 40–60μ 33
32. Diameter of oogonium 60–80μ 38
33. Division of suffultory cell supreme 25a. B. dispar var. ripartiana
33. Division of suffultory cell superior 34
33. Division of suffultory cell supramedian, median, or inframedian 35
33. Division of suffultory cell basal 9. B. brebissonii
34. Oogonium subquadriangular-globose 22. B. sessilis
34. Oogonium subdepressed-globose 25. B. dispar
35. Gynandrosporous .. 36
35. Idioandrosporous .. 31. B. congner
36. Diameter of oogonium 40–51μ 37
36. Diameter of oogonium 52–60μ 28. B. crassa
37. Vegetative cells 1–2 diameters long 30. B. quadrata
37. Vegetative cells 2–5 diameters long 13. B. subintermedia
38. Gynandrosporous .. 39
38. Idioandrosporous .. 27. B. crassuscula
39. Diameter of oogonium 50–70μ 40
39. Diameter of oogonium 70–80μ 23. B. setigera
40. Length of oogonium 48–50μ .. 20. B. valida
40. Length of oogonium 57–60μ .. 26. B. punctulata
41. Oogonium 22–27μ in diameter 35. B. tenuis
41. Oogonium 27–41μ in diameter 42
42. Vegetative cells rectangular .. 43
42. Vegetative cells repand .. 36. B. repanda
42. Vegetative cells neither rectangular nor repand 44
43. Diameter of oogonium 28–32μ 37a. B. rectangularis var. hiloensis
43. Diameter of oogonium 32–38μ 37. B. rectangularis
44. Oogonium 39–50μ in length .. 45
44. Oogonium 58–80μ in length .. 48
45. Vegetative cells 13–18μ in diameter 46
45. Vegetative cells 17–22μ in diameter 38. B. various
46. Dwarf male stipes 11–14×15–24μ 47
46. Dwarf male stipes 17–18×28–31μ 38b. B. various var. haeviensis
47. Length of oogonium 39–46μ .. 38a. B. various var. subsimplex
47. Length of oogonium 47–53μ .. 35a. B. tenuis var. norvegica
48. Oogonium fusiformly ellipsoid 49
48. Oogonium broadly ellipsoid to ovoid 50
49. Ribs of oospore smooth .. 40. B. rhadinospora
49. Ribs of oospore crenulate ... 40a. B. rhadinospora f. antiqua
50. Ribs of oospore coarsely serrate or crenulate 30. B. lagoensis
50. Ribs of oospore finely serrate or smooth 51
51. Vegetative cells 15–22×22–66μ 41. B. minor
51. Vegetative cells 15–25×27–80μ 41a. B. minor var. germanica
52. Oogonium 29–37μ in diameter 53
52. Oogonium 38–45μ in diameter 40b. B. rhadinospora var. litoralis
52. Oogonium 41–56μ in diameter 41. B. minor
52. Oogonium 56–66μ in diameter 42. B. bullardi
52. Oogonium 68–92μ in diameter 58
30

The Oedogoniaceae

53. Ribs of oospore smooth ... 40. B. rhadinospora
53. Ribs of oospore crenulate 40a. B. rhadinospora f. antiqua
54. Vegetative cells 19-27μ in diameter 55
54. Vegetative cells 27-30μ in diameter 43. B. denticulata
55. Oogonium 41-46μ in diameter 44. B. affinis
55. Oogonium 46-56μ in diameter 56
56. Vegetative cells 19-25×40-100μ 57
56. Vegetative cells about 27×54μ 45. B. anomala
57. Ribs of oospores broadly denticulate 46. B. insiginis
57. Ribs of oospores reticulate-denticulate 46a. B. insiginis var. reticulata
58. Oogonium globose .. 24. B. alabamensis
58. Oogonium pyriform .. 32. B. pyriforme
59. Oogonium ellipsoid .. 47a. B. imperialis var. regalis
59. Vegetative cells blood-red in color 50. B. sanguinea*
59. Vegetative cells medianly plicate 51. B. horrida*

1. B. nana Wittrock.
 (Pl. IX, fig. 75.)
1872, p. 7, Pl. 1, fig. 9; 1874, p. 50; B. nana Witttr. var. subbasispora Witttr. 1874, p. 50; Hirn 1900, p. 349, Pl. LVII, fig. 362; Collins 1909, p. 272; Heering 1914, p. 229, fig. 349; West 1916, p. 396, fig. 251c; Tiffany 1928, p. 132, Pl. XXII, fig. 75.

Monoecious; oogonia ellipsoid, patent, below terminal setae or vegetative cells; outer wall of oospore longitudinally ribbed; antheridia 1-2†, erect (rarely patent) subepigynous or scattered; vegetative cells 10-16×10-22μ; oogonia 20-25×33-40μ; oospores 18-23×30-38μ; antheridia 7-9×5-9μ.

Greenland, Alaska, Ceylon, India, Austria, England, Finland, Germany, Latvia, Sweden, Norway, Turkestan.

2. B. monile Wittrock and Lundell.
 (Pl. IX, fig. 72.)
In Wittrock 1874, p. 50; (?) B. nana Witttr. in Wolfe 1887, p. 100; Hirn 1900, p. 348, Pl. LVII, fig. 360; Collins 1909, p. 272; Heering 1914, p. 229, fig. 348; Tiffany 1928, p. 132, Pl. XXII, fig. 72; P. B. A. No. 1432.

Monoecious; usually few celled; vegetative cells short and sometimes globose; oogonia ellipsoid, patent (rarely erect), below terminal setae or vegetative cells; outer wall of oospore longitudinally ribbed; antheridia 1-2, erect or patent, subepigynous or scattered; vegetative cells 11-16×10-16μ; oogonia 22-25×30-38μ; oospores 20-23×28-35μ; antheridia 8-10×6-8μ.

United States: Massachusetts, New Jersey; Sweden, Finland, Latvia; British Columbia.

2a. Var. robusta Hirn.
 (Pl. IX, fig. 73.)
1900, p. 349, Pl. LVII, fig. 361; Heering 1914, p. 229; Tiffany 1928, p. 133, Pl. XXII, fig. 73.

*Species of incomplete descriptions and included in the key with such characters as are available.
†See foot note, page 65.
Oogonia considerably larger and broadly ellipsoid; vegetative cells 14-19×14-19μ; oogonia 28-34×39-45μ; oospores 26-32×37-42μ; antheridia 8-10×5-8μ.

Germany.

B. nana and _B. monile_, as far as specific dimensions are concerned, are quite similar plants. If one has a mature plant of the former, however, he will find vegetative cells longer than their width, and this is almost never the case in the latter. The variety _robusta_ is easily separated by its longer oogonia.

3. **_B. megastoma_** Wittrock and Lundell.

(Pl. IX, fig. 76.)

In Wittrock 1874, p. 51, Pl. 1, fig. 21; Hirn 1900, p. 354, Pl. LIX, fig. 370; Heering 1914, p. 231, fig. 353; Tiffany 1928, p. 133, Pl. XXII, fig. 76.

Monoecious; oogonia ellipsoid to subcylindric ellipsoid, patent (rarely erect), below terminal setae or vegetative cells, with large mouth-like pore; outer oospore wall longitudinally ribbed; antheridia 1-2, erect (rarely patent), scattered or subepigynous; vegetative cells 18-24×18-35μ; oogonia 32-36×48-54μ; oospores 30-34×46-52μ; antheridial cells 10-13×7-9μ.

Sweden, Denmark.

The large mouth-like pore of the oogonium rather readily separates mature plants from any others of the genus.

4. **_B. basispora_** Wittrock and Lundell.

(Pl. IX, fig. 74.)

In Wittrock 1874, p. 50; Hirn 1900, p. 350, Pl. LVIII, fig. 364; Heering 1914, p. 229, fig. 350; Tiffany 1928, p. 133, Pl. XXII, fig. 74.

Monoecious; oogonia ellipsoid or subcylindric-ellipsoid, patent or erect, below vegetative cells; outer oospore wall longitudinally ribbed; antheridia 1-3, patent or erect, scattered or subepigynous; vegetative cells 15-19×15-23μ; oogonia 24-28×40-45μ; oospores 22-25×38-43μ; antheridia 8-11×6-8μ.

United States: Ohio; Sweden.

Among the monoecious forms _B. basispora_ bears some resemblance to _B. debaryana_ and _B. mirabilis_, but can usually be distinguished by its relatively shorter vegetative cells and its oogonia.

5. **_B. debaryana_** Wittrock and Lundell.

(Pl. IX, fig. 77.)

In Wittrock 1874, p. 51; Hirn 1900, p. 353, Pl. LIX, fig. 369; Heering 1914, p. 231, fig. 352; Tiffany 1928, p. 133, Pl. XXII, fig. 77.

Monoecious; oogonia ellipsoid, patent, below vegetative cells or terminal setae; outer wall of oospore longitudinally ribbed; antheridia
The Oedogoniaceae

1–?, patent or seldom erect, subepigynous or scattered; vegetative cells 18–22×23–44μ; oogonia 27–33×43–50μ; oospores 25–30×40–48μ; antheridia 10–12×8–9μ.

Sweden, Latvia, Canada.

6. B. mirabilis Wittrock.

(Pl. IX, fig. 69.)

1870, p. 137, Pl. 1, figs. 8 and 9; 1874, p. 50; B. sp. Reinsch 1875, p. 81; B. mirabilis Witt. var. lapponica Witt. and Lund. in Wittrock 1874, p. 51; Hirn 1900, p. 351, Pl. LVIII, fig. 365; Hirn 1906, p. 57; Collins 1909, p. 272; Heering 1914, p. 229, fig. 351; Tiffany 1928, p. 134, Pl. XXXI, fig. 69; P. B. A. No. 1431.

Monoecious; oogonia cylindric-ellipsoid to subglob-long-ellipsoid, patent (rarely erect), below terminal setae or vegetative cells; outer wall of oospore longitudinally ribbed; antheridia 1–4, erect or patent, subepigynous or scattered; vegetative cells 15–20×20–40μ; oogonia 26–33×46–58μ; oospores 25–31×44–56μ; antheridia 9–12×6–9μ.

6a. Form immersa (Wittrock) Hirn.

(Pl. IX, fig. 70.)

1900, p. 352, Pl. LVIII, fig. 367; B. mirabilis Witt. var. immersa Witt. 1874, p. 51; Heering 1914, p. 230; Tiffany 1928, p. 134, Pl. XXXII, fig. 70.

Norway, Germany.

6b. Var. gracilis (Pringsheim) Hirn.

(Pl. IX, fig. 71.)

1900, p. 353, Pl. LIX, fig. 368; B. gracilis Pringsh. 1858, p. 74; Wittrock 1874, p. 57; Heering 1914, p. 230; Tiffany 1928, p. 134, Pl. XXXII, fig. 71.

Vegetative cells 13–16×17–32μ; oogonia 20–28×47–55μ; oospores 18–26×43–53μ; antheridia 8–11×6–8μ.

Germany, Sweden, Denmark.

7. B. elatior Pringsheim.

(Pl. I, fig. 1.)

1858, p. 73, Pl. 6, fig. 5; Wittrock 1874, p. 49; Hirn 1900, p. 321, Pl. LI, fig. 327; Hirn 1906, p. 56; Heering 1914, p. 231, fig. 355; Tiffany 1928, p. 134, Pl. XIV, fig. 1.

Diococious, nannandrous, gynandrosporous; oogonia depressed globose to depressed subquadangular-globose, erect or seldom patent, below androsporangia; division of suffultory cell basal; oospore smooth; androsporangia epigynous or rarely scattered, 1–2; dwarf males usually on suffultory cells, antheridia exterior, unicellular, stipe scarcely longer than the antheridia; vegetative cells 13–18×20–63μ; oogonia 34–44×31–38μ; oospores 32–42×29–36μ; androsporangia 10–13×8–11μ; dwarf male stipe 8–10×18–35μ; antheridia 6–8×9–11μ.

United States: Massachusetts; India, Ceylon, Austria, Australia, Germany, Sweden, New Caledonia.
7a. Form *pumila* Hirn.

(Pl. I, fig. 2.)

1900, p. 322. Pl. LI, fig. 328; Tiffany 1928, p. 135, Pl. XIV, fig. 2.

Brazil.

7b. Var. *scrobiculata* Tiffany.

(Pl. I, fig. 3.)

1928, p. 135, Pl. XIV, fig. 3.

Similar to the type except outer oospore wall is minutely scrobiculate; antheridia 1–2; vegetative cells 13–16×28–40μ; oogonia 28–44×28–36μ; oospores 26–42×26–34μ; androsporangia 10–13×10–16μ; antheridia 6–8×4–7μ; dwarf male stipe 11–13×16–20μ.

United States: Alabama.

This variety clearly belongs with *B. elatior* because of its exterior antheridia, although the oospore markings are similar to those of *B. brebissonii*. It is barely possible, of course, that *B. elatior* sometimes has scrobiculate oospores, although there is no evidence for it. Until such time as more is known about the variations, if any, in the oospore of the species, it seems best to catalogue the separate variety, as above.

8. **B. minuta** West and West.

(Pl. I, fig. 9.)

1902, p. 126, Pl. 17, fig. 10; Hirn 1906, p. 25, Pl. IV, fig. 28; West 1916, p. 388, fig. 242; Tiffany 1928, p. 135, Pl. XIV, fig. 9.

Dioecious, nannandrous, gynandrosporous; oogonia depressed-globose, patent or erect, below the androsporangia; division of oogonium median or nearly so; suffultory cells without division, or with division basal; oospore wall smooth; androsporangia unicellular, epigynous; dwarf males on suffultory cells, antheridia exterior, unicellular, stipe twice as long as antheridia, curved; vegetative cells 9–12×18–35μ; oogonia 29–35×24–27μ; oospores 27–33×22–25μ; androsporangia 9–11×6–9μ; dwarf males 6–7×18–20μ.

Heneratgodha, Ceylon.

B. minuta is among the smallest of the genus, the length of its oogonium being less than that of any other known species.

9. **B. brebissonii** Kuetzing.

(Pl. I, fig. 7.)

1854, p. 10, Pl. 86, figs. B and f; *B. tumida* Wittr. 1870, p. 139; 1874, p. 46; Hirn 1900, p. 323, Pl. LI, fig. 330; Collins 1909, p. 268; Heering 1914, p. 231, fig. 356; Tiffany 1928, p. 135, Pl. XIV, fig. 7.

Dioecious, nannandrous gynandrosporous; oogonia depressed-sub-quadrangular-globose, erect, below terminal setae or androsporangia;
division of the suffultory cell basal; outer oospore wall scrobiculate; androsporangia scattered or epigynous, 1–3; dwarf males on oogonia (rarely on adjacent cells), antheridia interior, stipe slightly curved, shorter than antheridia; vegetative cells 17–20×50–90μ; oogonia 42–50×37–45μ; oospores 40–48×35–43μ; androsporangia 11–15×12–18μ; dwarf males 10–12×28–33μ.

United States: Massachusetts, Illinois, Alaska; Europe.

This species is rather readily distinguished by its usually basal division of the suffultory cells, its interior antheridium, and its erect oogonia. It is distinguished from the variety minor by its larger size.

9a. Var. minor Woronichin.

Smaller than the type: vegetative cells 13–17×20–100μ; oogonia 35–38×31–38μ; oospores 33–36×29–36μ; dwarf males 8–9×26–27μ.

Tiflis, Caucasus.

10. B. furberae Collins.

(Pl. I, fig. 8.)

1918a, p. 142, Pl. 124, figs. 1–5; Tiffany 1928, p. 136, Pl. XIV, fig. 8.

Dioecious, nannandrous, gynandrosporous; oogonia depressed globose, below terminal setae, patent (rarely erect); division of suffultory cell inframedian; outer wall of oospore scrobiculate; androsporangia scattered, 1–9; dwarf males on oogonia, stipe strongly curved; antheridia interior; vegetative cells 10–15×30–75μ; oogonia 36–43×27–34μ; oospores 34–41×25–32μ; androsporangia 9–10×8–9μ; dwarf males 7–8×20–25μ.

United States: Massachusetts (Woods Hole).

This species differs from B. clatior in its scrobiculate spore wall and its division of suffultory cell. It is smaller than B. brebissonii.

11. B. crenulata Pringsheim.

(Pl. I, fig. 4.)

1858, p. 72, Pl. 6, fig. 4; B. crenulata Pringsh. var. plena Wittr. 1872, p. 19; Wittrock 1874, p. 45; Hirn 1900, p. 331, Pl. LIII, fig. 337; Collins 1909, p. 260; Heering 1914, p. 233, fig. 359; Tiffany 1928, p. 136, Pl. XIV, fig. 4.

Dioecious, nannandrous, gynandrosporous; oogonia subdepressed-globose, patent, below terminal setae or androsporangia, or rarely vegetative cells; division of suffultory cells median or slightly below; spore wall scrobiculate to crenulate; androsporangia epigynous or scattered. 1–5; dwarf males on or near oogonia, antheridia interior, stipe slightly curved, shorter than antheridium; vegetative cells 16–20×32–70μ; oogonia 43–48×35–43μ; oospores 40–46×33–40μ; antheridia 10–15×7–10μ; dwarf males 9–10×24–26μ.
United States: Michigan, Illinois; Australia, Finland, Germany, Norway, Sweden, Denmark, Patagonia.

B. crenulata has often been confused with forms of *B. intermedia*, since the “crenulations” of the oospore walls are not always distinctly “crenulate.” It seems best, however, to retain the two as distinct species because (1) the latter normally has longer cells in proportion to diameter and (2) the two species normally represent extremes of a series of gradations in oospore wall ornamentation: *B. intermedia* may have nearly smooth to scrobiculate oospores, while those of *B. crenulata* vary from distinctly scrobiculate to crenulate.

12. **B. intermedia** De Bary.

(Pl. I, fig. 5.)

1854, p. 72, Pl. 4, figs. 1-7; Wittrock 1874, p. 44: *B. crenulata* Pringsh. var. *supremediana* Wittr. 1883 in Wittr. and Nordst. Alg. Exs. Fasc. 11, No. 509; (?) *B. clachistandria* Wittr. in Borge 1896, p. 3; Hirn 1900, p. 326, Pl. LII, fig. 333; *B. intermedia* De Bary var. *americana* Hirn 1900, p. 328, Pl. LII, fig. 334; *B. intermedia* De Bary f. *supramediana* (Wittr.) Hirn 1000, p. 328, Pl. LII, fig. 335; Hirn 1906, p. 56; Collins 1909, p. 268, fig. 82; Heering 1914, p. 233, fig. 335; Tiffany 1926, p. 109, Pl. X, fig. 107; 1928, p. 137, Pl. XIV, fig. 5; P. B. A. No. 973.

Dioecious, nannandrous, gynandrosporous; oogonia subdepressed-globose, patent, below androsporangia; division of suffultory cells nearly median; outer wall of oospore scrobiculate, rarely apparently smooth; androsporangia 1-2, epigynous or rarely scattered: dwarf males on the oogonium; antheridium interior, stipe slightly curved, shorter than the antheridium; vegetative cells 17-20×35-70μ; oogonia 40-18×31-40μ; oospores 38-16×30-38μ; androsporangial cells 11-13×7-12μ; dwarf males 9-10×21-26μ.

12a. **Var. depressa** Wittrick.

(Pl. I, fig. 6.)

1874, p. 44, Pl. I, fig. 18; Hirn 1900, p. 329, Pl. LII, fig. 336; *B. intermedia* De Bary var. *depressa* Hirn in Heering 1914, p. 233; Tiffany 1926, p. 109; 1928, p. 137, Pl. XIV, fig. 6.

Vegetative cells a little longer than in the type; oogonia depressed-globose; outer oospore wall scrobiculate, often nearly smooth; division of suffultory cell a little above the median position (rarely a little below median); vegetative cells 14-19×35-88μ; oogonia 42-46×30-40μ; oospores 40-14×28-38μ; androsporangial cells 11-13×9-12μ; dwarf males 9-11×22-25μ.

United States: Iowa; Finland, Germany, Norway, Sweden; British Columbia.

Hirn recognized with *B. intermedia* its variety *depressa* and two forms, *americana* Hirn and *supramediana* (Wittrick)
The Oedogoniaceae

Hirn. I have seen a great number of *intermedia* plants from the North Central states, and judging from this American material and from original descriptions, it seems almost impossible to recognize with certainty either of the two forms above; the variety is probably distinct. Occasionally individual plants and more often parts of filaments are found with slight differences and variations in form and shape of vegetative cells and oogonia. Frequently all variations between the type and the two forms can be noted in one plant. The variety *depressa* with relatively longer cells in proportion to diameter is perhaps sufficiently distinct to recognize. It does not appear to be to the best interests of taxonomic nomenclature in this species to do little more than recognize its variability. I have, therefore, included with the species proper the two forms *americana* and *supramediana*. The relationship to *B. crenulata* is noted above, under that species.

 (Pl. II, fig. 15.)

 In Hirn 1895, p. 8; Hirn 1900, p. 332, Pl. LIII, fig. 338; Heering 1914, p. 233, fig. 360; West 1916, p. 306, fig. 251A; Tiffany 1928, p. 138, Pl. XV, fig. 15.

 Dioecious, nannandrous, gynandrosporous; oogonia subdepressed-globose, patent, below terminal setae, androsporangia, or rarely vegetative cells; division of suffultory cell submedian; outer spore wall scrobiculate; androsporangia 1–7, epigynous or scattered; dwarf males on oogonia, stipe curved or nearly erect, shorter than the oogonia; vegetative cells 17–22×34–100μ; oogonia 44–51×39–44μ; oospores 42–48×37–41μ; androsporangia 13–16×9–10μ; dwarf males 10–12×25–30μ.

 Finland, Great Britain.

 (Pl. II, fig. 14.)

 In Wittrock 1874, p. 45; (?) *B. elachistandria* Wittr. in Wolle 1887, p. 97; Hirn 1900, p. 336, Pl. LIV, fig. 346; Heering 1914, p. 235, fig. 364; Tiffany 1928, p. 138, Pl. XV, fig. 14.

 Dioecious, nannandrous, gynandrosporous; oogonia biconically and angularly globose, apically truncate, below terminal setae or rarely androsporangia; division of suffultory cells a little above median position; oospore wall smooth; androsporangia scattered or epigynous, 1–3; dwarf males on oogonia, antheridia interior, stipe somewhat curved; vegetative cells 13–18×20–45μ; oogonia 36–42×33–39μ; oospores 34–40×30–36μ; androsporangia 10–11×9–10μ; dwarf males 8–9×18–21μ.

 United States: Pennsylvania; England, Sweden, Finland, Africa.
14a. Form *picta* Hirn.

Of smaller dimensions; vegetative cells 13-16×19-40μ; oogonia 33-38×31-37μ.

Brazil.

15. **B. borealis** Wittrock.

(Pl. II, fig. 10.)

1870, p. 46; Hirn 1900, p. 324, Pl. I, fig. 331; Heering 1914, p. 233, fig. 357; Tiffany 1928, p. 139, Pl. XV, fig. 10.

Dioecious, nannandrous, gynandrosporous; oogonia subdepressed-globose, patent, below vegetative cells, wall thick; division of suffultory cell superior (occasionally nearly supreme); outer oospore wall scrobiculate or sometimes nearly smooth; androsporangia 1-3, subepigynous, patent; dwarf males on oogonia, antheridia interior, stipe a little curved, shorter than antheridia; vegetative cells 16-21×20-42μ; oogonia 40-48×35-40μ; oospores 38-46×33-38μ; androsporangia 12-13×8-9μ; dwarf males 9-10×18-21μ.

Norway, Sweden, Finland.

16. **B. nordstedtii** Wittrock.

(Pl. II, fig. 17.)

1874, p. 44; Hirn 1900, p. 332, Pl. LI, fig. 339; Collins 1909, p. 269; Heering 1914, p. 234, fig. 361; West 1916, p. 396, fig. 251B; Tiffany 1928, p. 139, Pl. XV, fig. 17; P. B. A. No. 717.

Dioecious, nannandrous, gynandrosporous; oogonia depressed-globose or subquadrangularly so, patent, below androsporangia or rarely terminal setae; division of suffultory cell superior (occasionally submedian); oospore wall finely scrobiculate or nearly smooth; androsporangia unicellular, epigynous; dwarf males on oogonia, stipe slightly curved, shorter than antheridia; vegetative cells 14-18×28-85μ; oogonia 36-43×29-36μ; oospores 34-41×27-34μ; androsporangia 10-12×9-12μ; dwarf males 9-19×23-25μ.

United States: Ohio, Illinois, Connecticut, Alaska; Greenland, Australia, Finland, Germany, Spain, Sweden, Austria, Ireland.

16a. Form *suberecta* Collins.

(Pl. II, fig. 18.)

1912, p. 88; Tiffany 1928, p. 139, Pl. XV, fig. 18.

Smaller; oogonia 28-32×34-38μ, depressed-globose, often erect.

United States: Massachusetts.

The suberect habit of this form appears to be very inconsistent, but the smaller dimensions warrant a separate form.

1923, p. 99.

Vegetative cells 10-12×20-25μ; oospores about 36×33μ; dwarf males 8-10×19-20μ.

Tiflis (Caucasus).
17. **B. polyandria** Cleve.

(Pl. II, figs. 11 and 12.)

In Wittrock 1870, p. 140; *B. polyandra* Cleve in Wittrock 1874, p. 46; Hirn 1900, p. 334, Pl. LVII, fig. 342; Collins 1909, p. 270; Heering 1914, p. 234, fig. 362; Tiffany 1928, p. 140, Pl. XV, figs. 11 and 12; P. B. A. No. 1682.

Dioecious, nannandrous, idioandrosporous; oogonia subdepressed-globose, patent, below terminal setae or vegetative cells; division of sufftorty cell superior (rarely submedian); outer oospore wall scrobiculate or nearly smooth; androsporangia to 10-seriate; dwarf males on oogonia, antheridia superior, stipe slightly curved, shorter than antheridia; vegetative cells 15–20×45–100μ; oogonia 39–46×32–42μ; oospores 37–41×30–40μ; androsporangia 12–14×11–15μ; dwarf males 8–9×23–26μ.

United States: Massachusetts, Florida; Brazil, Europe.

17a. Form *notabilis* Hirn.

(Pl. II, fig. 13.)

1900, p. 334, Pl. LVIV, fig. 343; Tiffany 1928, p. 140, Pl. XV, fig. 13.

Division of sufftory cell often supreme; vegetative cells 17–22×51–88μ; oogonia 41–46×36–43μ; oospores 39–44×34–41μ; androsporangia 12–14×12–15μ; dwarf males 8–10×23–25μ.

Great Britain.

18. **B. gigantea** Pringsheim.

(Pl. V, figs. 35 and 36.)

1858, p. 71, Pl. 6, fig. 1; Wittrock 1874, p. 48; Hirn 1900, p. 347, Pl. LVII, fig. 359; Collins 1909, p. 271; Heering 1914, p. 239, fig. 373; Tiffany 1926, p. 109, Pl. X, figs. 108–110; Tiffany 1928, p. 140, Pl. XVIII, figs. 35 and 36.

Dioecious, nannandrous, idioandrosporous; oogonia subdepressed globose or rarely depressed oboviform-globose, patent, below terminal setae, rarely below vegetative cells; division of sufftory cell slightly below median; outer wall of oospore reticulate-scrobiculate; androsporangia 1–5; dwarf males slightly longer than the oogonia on which they develop; antheridia interior; stipe about twice as long as antheridium, curved; vegetative cells 24–32×50–112μ; oogonia 60–70×50–58μ; oospores 58–68×48–56μ; androsporangial cells 18–20×10–14μ; dwarf male stipe 10–13×28–45μ; antheridial cell 13–14×20–30μ.

United States: Michigan, Florida, Iowa, Pennsylvania; Australia, Europe.

19. **B. diamesandria** Nordstedt and Hirn.

(Pl. II, fig. 16.)

In Hirn 1900, p. 323, Pl. LI, fig. 329; Tiffany 1928, p. 140, Pl. XV, fig. 16.

Dioecious, nannandrous, gynandrosporous; oogonia subdepressed-globose, erect, below terminal setae or vegetative cells; division of sufftory cell basal; oospore wall smooth; androsporangia scattered or subepigynous, 1–7; dwarf males on sufftory cells (rarely on oogonia), antheridia unicellular; vegetative cells 17–23×42–80μ; oogonia 48–54×45–52μ; oospores 45–53×13–50μ; androsporangia 14–17×10–15μ; dwarf male stipe 11–13×15–21μ; antheridia 10–12×14–18μ.

The Oedogoniaceae
Bengal, Asia.

20. **B. elachistandria** Wittrock.
 (Pl. III, fig. 21.)

1874, p. 43; *B. intermedia* Pringsh. 1858, p. 72, Pl. IV, figs. 15–23; Hirn 1900, p. 342, Pl. LV, fig. 354; Heering 1914, p. 231, fig. 354; Tiffany 1928, p. 141, Pl. XVI, fig. 21.

Dioecious, nannandrous, gynandrosporous; oogonia globose, patent, below androsporangia; division of suffultory cell nearly median; oospore wall smooth (?); androsporangia epigynous or scattered, 1–2; dwarf males on oogonia, small and unicellular; vegetative cells 20–24×30–60μ; oogonia about 46×44μ; androsporangia 14–16×10–11μ; dwarf males 9×19μ.

Germany.

21. **B. obliqua** Lundell.
 (Pl. III, fig. 26.)

In Hirn 1900, p. 344, Pl. LV, fig. 356; Heering 1914, p. 238, fig. 371; Tiffany 1928, p. 141, Pl. XVI, fig. 26.

Dioecious, nannandrous, gynandrosporous and idioandrosporous; oogonia depressed-globose, patent, below terminal setae or (rarely) androsporangia; division of suffultory cell median or nearly so; oospore wall smooth; androsporangia 1–?, epigynous; dwarf males on oogonia, antheridia interior; vegetative cells 21–27×42–108μ; oogonia 55–64×43–51μ; oospores 53–62×40–49μ; androsporangia 16–21×7–10μ; dwarf male stipes 9–10×25–36μ; antheridia 10–12×15–21μ.

United States: Michigan; Austria, Sweden.

22. **B. sessilis** Wittrock.
 (Pl. III, fig. 19.)

1872, p. 18, Pl. 1, fig. 2; 1874, p. 47; Hirn 1900, p. 338, Pl. LV, fig. 349; Heering 1914, p. 236, fig. 366; Tiffany 1928, p. 141, Pl. XVI, fig. 19.

Dioecious, nannandrous, gynandrosporous; oogonia subquad-rangularly globose, patent, below terminal setae or occasionally below vegetative cells; division of suffultory cell superior; outer oospore wall scrobiculate; androsporangia scattered, 1–3; dwarf males on oogonia or rarely suffultory cells, antheridia interior, stipe a little curved, shorter than antheridia; vegetative cells 19–22×38–72μ; oogonia 51–56×44–50μ; oospores 48–54×42–48μ; androsporangia 10–13×10–12μ; dwarf males 9–11×26–29μ.

France, Sweden, Canada.

22a. Form **glabra** Hirn.
 (Pl. III, fig. 20.)

1900, p. 339, Pl. LV, fig. 350; Heering 1914, p. 236; Tiffany 1928, p. 141, Pl. XVI, fig. 20.

Smaller, with oospore wall smooth; vegetative cells 16–21×32–75μ; oogonia 44–51×40–45μ; oospores 42–48×38–43μ; androsporangia 10–12×10–12μ; dwarf males 9–11×23–27μ.

Sweden.
23. **B. setigera** (Roth) C. A. Agardh.

(Pl. V, fig. 37.)

Dioecious, nannandrous, gynandrosporous; oogonia subdepressed or depressed (quadrangularly) globose, patent, generally below terminal setae, more rarely below androsporangia or vegetative cells; division of suffultory cell slightly above median or rarely superior; outer oospore wall scrobiculate; androsporangia scattered or more rarely epigynous, 1–3; dwarf males on oogonia or near it; antheridia interior, stipe curved, shorter than antheridium; vegetative cells 25–28×62–110μ; oogonia 70–80×56–65μ; oospores 67–77×53–62μ; androsporangia 16–20×10–18μ; dwarf males 11–14×30–36μ.

United States: Connecticut, New Jersey, Florida, Alabama, South Carolina, Michigan; Europe, South America; Africa.

24. **B. alabamensis** Transeau and Brown.

(Pl. V, fig. 38.)

In Tiffany 1928, p. 142, Pl. XVIII, fig. 38.

Dioecious, nannandrous, gynandrosporous; oogonia globose, depressed globose, or rarely angularly globose, patent; division of suffultory cells superior; outer spore wall scrobiculate; androsporangia hypogynous or epigynous or rarely scattered; dwarf males, a little shorter than oogonia, on vegetative cells, antheridia interior, stipe a little curved; vegetative cells 22–40×62–111μ; oogonia 77–92×70–88μ; oospores 75–90×68–86μ; dwarf male stipes 14–18×35–38μ; antheridia 14–15×15–16μ.

United States: Alabama.

In form and general appearance this species is near *B. setigera*. It is larger, however, in all dimensions and is thus the largest globose species of the genus.

25. **B. dispar** Wittrock.

(Pl. III, fig. 23.)

In Wittrock and Nordstedt Exs. 1882; Hirn 1900, p. 335. Pl. LIV, fig. 344; Collins 1909, p. 270; Heering 1914, p. 234, fig. 363; Tiffany 1928, p. 142, Pl. XVI, fig. 23.

Dioecious, nannandrous, gynandrosporous and idioandrosporous; oogonia subdepressed globose, patent, below terminal setae or rarely vegetative cells; division of suffultory cell superior (rarely submedian); outer spore wall thick, finely scrobiculate; androsporangia scattered, 1–2; dwarf males on oogonia, antheridia interior, stipe a little curved, shorter than antheridia; vegetative cells 16–21×32–95μ; oogonia 44–56×42–51μ; oospores 40–54×38–18μ; androsporangia 12–16×10–12μ; dwarf males 9–11×23–26μ.

Sweden, Greenland.
25a. Var. ripartiana Wittrock.

(Pl. III, figs. 24 and 25.)

In Hirn 1900, p. 335, Pl. LIV, fig. 345; Tiffany 1928, p. 143, Pl. XVI, figs. 24 and 25.

Idioandrosporous; division of suffultory cell supreme; dwarf males on or near oogonia; vegetative cells 15–21×45–105μ; oogonia 48–54×41–50μ; oospores 46–53×39–48μ; androsporangia 12–16×11–14μ; dwarf males 10–12×23–25μ.

France.

(Pl. IV, fig. 31.)

1900, p. 326, Pl. LI, fig. 332; B. setigera (Roth) C. A. Agardh var. punctulata Nordstedt 1888, p. 9; Tiffany 1928, p. 143, Pl. XVII, fig. 31.

Dioecious, nannandrous, idioandrosporous; oogonia subdepressed globose, patent, below terminal setae or androsporangia, wall thickened, division median, narrow but distinct; division of suffultory cell superior; outer oospore wall scrobiculate; androsporangia epigynous, 1–?; dwarf males on oogonia, antheridia interior, stipe a little curved, shorter than the antheridium; vegetative cells 22–26×66–104μ; oogonia 64–68×57–60μ; oospores 60–66×53–58μ; androsporangia 18×11μ; dwarf males 11–12×30–34μ.

New Zealand.

27. B. crassiuscula Nordstedt.

(Pl. IV, figs. 28 and 29.)

1877, p. 30, Pl. 3, figs. 14 and 15; B. setigera (Roth) C. A. Agardh in Moebius 1894, p. 315; (?) B. ellipsospora West 1899, p. 54; Hirn 1900, p. 341, Pl. LV, fig. 352; Collins 1909, p. 271; Heering 1914, p. 236, fig. 368; Tiffany 1928, p. 143, Pl. XVII, figs. 28 and 29.

Dioecious, nannandrous, idioandrosporous; oogonia depressed (subquadrangularly) globose, patent, below terminal setae or occasionally vegetative cells; division of suffultory cells superior (rarely submedian); outer oospore wall scrobiculate; androsporangia 1–4; dwarf males on oogonium or near it; antheridia interior, stipe slightly curved, shorter than antheridium; vegetative cells 22–27×55–148μ; oogonia 60–78×50–62μ; oospores 58–76×48–60μ; antheridia 16–19×10–13μ; dwarf males 12–14×30–34μ.

United States: Illinois, Massachusetts, Michigan; Canada, Greenland, Europe, Australia, Ceylon.

28. B. crassa Pringsheim.

(Pl. IV, fig. 32.)

1855, Pl. 1, fig. 29; Wittrock 1874, p. 48; Hirn 1900, p. 343, Pl. LVI, fig. 355; Heering 1914, p. 238, fig. 370; Tiffany 1928, p. 143, Pl. XVII, fig. 32.

Dioecious, nannandrous, gynandrosporous; oogonia subdepressed globose to globose, patent, below terminal setae or rarely vegetative cells; division of suffultory cell median or a little above; outer oospore wall scrobiculate; androsporangia scattered, up to 4-seriate; dwarf males a little longer than oogonia, antheridia exterior, unicellular, stipe about twice as long as antheridium; vegetative cells 22–26×44–60μ;
oogonia 52–60×42–51μ; oospores 50–58×40–48μ; androsporangia 13–15×14–16μ; dwarf male stipes 9–11×32–44μ; antheridia 8–9×21–24μ.

United States: Ohio; Germany, Austria, Switzerland.

The outer oospore wall of this species is recorded by Hirn as doubtfully smooth. Material collected in Ohio in 1920 showed the wall to be scrobiculate, and the description is emended accordingly.

29. **B. valida** Wittrock.
(Pl. IV, fig. 27.)

1872, p. 17, Pl. 1, fig. 1; 1874, p. 48; Hirn 1900, p. 346, Pl. LVI, fig. 357; Heering 1914, p. 238, fig. 372; Tiffany 1928, p. 144, Pl. XVI, fig. 27.

Dioecious, nannandrous, gynandrosporous; oogonia depressed globose, patent, below terminal setae; division of sullfurty cell about median; outer oospore wall scrobiculate; androsporangia scattered, 1–3; dwarf males on oogonia, antheridia interior, stipe a little longer than antheridium, curved; vegetative cells 23–27×46–95μ; oogonia 50–70×48–56μ; oospores 57–68×46–51μ; androsporangia 18–20×10–14μ; dwarf male stipes 9–10×23–29 (–40) μ; antheridia 11–12×20–22μ.

United States: Michigan; Finland, Sweden.

30. **B. quadrata** Wittrock.
(Pl. III, fig. 22.)

1872, p. 19, Pl. 1, fig. 3; 1874, p. 45; Hirn 1900, p. 338, Pl. LV, fig. 348; Heering 1914, p. 236, fig. 365; Tiffany 1928, p. 144, Pl. XVI, fig. 22.

Dioecious, nannandrous, gynandrosporous; oogonia subdepressed (subquadrangularly) globose, patent, below androsporangia; division of sullfurty cell inframedian (rarely nearly median); outer oospore wall scrobiculate; androsporangia 1–2, epigynous, rarely scattered; dwarf males on oogonia, antheridia interior, stipe a little curved, shorter than antheridium; vegetative cells 19–25×30–50μ; oogonia 40–50×40–45μ; oospores 38–48×38–43μ; androsporangia 15–17×11–12μ; dwarf males 10–12×27–32μ.

United States: Ohio; Finland, Sweden.

31. **B. congener** Hirn.
(Pl. V, figs. 33 and 34.)

1900, p. 346. Pl. LVII, fig. 358; Tiffany 1926, p. 108, Pl. X, figs. 111 and 112; Tiffany 1928, p. 144, Pl. XVI, figs. 33 and 34.

Dioecious, nannandrous, idioandrosporous; oogonia depressed-globose or more rarely oboviform-globose, patent, below terminal setae; division of sullfurty cell inframedian; outer oospore wall scrobiculate; androsporangia 1–4; dwarf males a little shorter than the oogonia on which they develop; antheridia interior, stipe about twice as long as the antheridal cell, curved; vegetative cells 21–24×40–75μ; oogonia 44–54×40–48μ; oospores 42–52×38–46μ; androsporangial cells 13–15×10–13μ; dwarf males 9–10×29–34μ; antheridal cells 10–11×14–17μ.

United States: Iowa; South America.
32. **B. pyrulum** Lundell.

(Pl. IV, fig. 30.)

In Hirn 1900, p. 342, Pl. LV and LVI, fig. 353; Heering 1914, p. 238, fig. 369; Tiffany 1928, p. 145, Pl. XVII, fig. 30.

Dioecious, nannandrous, (?) idioandrosporous; oogonium pyriform, patent, below terminal setae, wall thickened; division of suffultory cells submedian; outer oospore wall finely scrobiculate; dwarf males near or on oogonia, antheridia interior, stipe a little curved, shorter than antheridium; vegetative cells 23–29×64–178µ; oogonia (58–) 68–85×64–79µ; oospores 63–83×61–77µ; dwarf males 11–14×29–33µ.

Austria, Sweden, Finland.

33. **B. doliiformis** Borge.

(Pl. VI, figs. 39 and 40.)

1925, p. 11, Pl. 1, fig. 41; Tiffany 1928, p. 145, Pl. XIX, figs. 39 and 40.

Dioecious, nannandrous; oogonia ellipsoid, erect, below terminal setae; suffultory cell without division; oospores ellipsoid, not quite filling oogonia, wall smooth; dwarf males on vegetative cells, antheridia exterior, 2; vegetative cells 11–15×11–16µ; oogonia 23–25×26–33µ; oospores 22–23×27–28µ; dwarf male stipe 10–12×10–12µ; antheridia 7–8×7–8µ.

Argentina:

This species is near *B. pygmaea* in size and shape of cells and in having suffultory cells without division. The plant is few celled with the vegetative cells convex, as seen laterally, sometimes with a broad median constriction, and the oospore wall is smooth.

34. **B. pygmaea** Pringsheim; Wittrock.

(Pl. VI, fig. 41.)

*In Wittrock 1870, p. 141; *B. pygmaea* b. *minor* Pringsh. 1858, p. 74; *B. pygmaea* Wittr. 1870, p. 141; Wittrock 1874, p. 52; Hirn 1900, p. 356, Pl. LIX, fig. 372; Collins 1909, p. 273; Heering 1914, p. 239, fig. 374; Tiffany 1928, p. 145, Pl. XIX, fig. 41.*

Dioecious, nannandrous, gynandrosporous; oogonia ellipsoid, patent, below terminal setae or vegetative cells; outer wall of oospore longitudinally ribbed; suffultory cells without division; androsporangia subepigynous or scattered, 1–3 celled; dwarf males near oogonia, antheridia exterior, 1–3; vegetative cells 11–15×8–15µ; oogonia 22–25×32–40µ; oospores 20–23×30–38µ; androsorangia 7–10×6–9µ; dwarf male stipes 11–12×13–19µ; antheridia 7–8×7–8µ.

United States: Massachusetts; Europe, Brazil.

35. **B. tenuis** (Wittrock) Him.

(Pl. VII, fig. 59.)

1900, p. 368, Pl. LXIII, fig. 388; *B. rectangularis* Wittr. var. tenuis Wittr. 1874, p. 56; *B. rectangularis* Wittr. var. norvegica Wittr. 1874, p. 56; *B. tenuis* (Wittr.) Him var. norvegica (Wittr.) Him 1900, p. 369 (not 1906, p. 60); Collins 1912, p. 89; Heering 1914, p. 242, fig. 381; Tiffany 1928, p. 146, Pl. XX, fig. 59.
Dioecious, nannandrous, gynandrosporous; oogonia suboblong-ellipsoid, erect or patent, below terminal setae or androsporangia; outer oospore wall longitudinally ribbed; androsporangia epigynous or more rarely scattered, 1–7; dwarf males on or near oogonia; antheridia exterior, 1–3; vegetative cells 13–16×20–40μ; oogonia 22–26×42–48μ; oospores 20–24×40–46μ; androsporangia 10–12×13–19μ; dwarf male stipes 12–14×18–24μ; antheridia 7–9×6–7μ.

United States: Massachusetts; Northern Europe.

35a. Var. norvegica (Wittrock) Hirn. (Pl. VII, fig. 60.)

1906, p. 60; Tiffany 1928, p. 146, Pl. XX, fig. 60.

Larger vegetative cells and oogonia; vegetative cells 15–18×22–36μ; oogonia 27–34×47–53μ; oospores 25–32×45–51μ; dwarf male stipes 12–14×19–23μ; antheridia 8–9×8μ.

Finland.
The dimensions of the variety norvegica as given by Hirn in his monograph (1900, p. 369) are so nearly the same as those of the species proper as to make its varietal position scarcely tenable. Material collected by Silfvenius in Finland in 1903 is labelled variety norvegica by Hirn (1906) having the dimensions given above. It seems best, therefore, to consider the variety as having the dimensions as recorded for the Finnish material, and to regard the former description as included in the species proper.

36. B. repanda Wittrock. (Pl. VI, fig. 47.)

1874, p. 55; B. rectangularis Wittr. var. Lundellii Wittr. 1874, p. 56; (?) B. rhadinospora Wittr. in Wolle 1887, p. 103; Hirn 1900, p. 363, Pl. LXI, fig. 380; Collins 1909, p. 274; Heering 1914, p. 240, fig. 375; Tiffany 1928, p. 146, Pl. XIX, fig. 47.

Dioecious, nannandrous, gynandrosporous; oogonia suboblong-ellipsoid, patent or erect, below androsporangia, terminal setae, or vegetative cells; outer oospore wall longitudinally ribbed; androsporangia epigynous or subepigynous, 1–7; dwarf males near or on oogonia; antheridia exterior, 1–3; vegetative cells, frequently repand, 12–17×24–60μ; oogonia 26–36×43–53μ; oospores 21–33×40–50μ; androsporangia 13–15×16–21μ; dwarf male stipes 11–15×21–27μ; antheridia 7–10×5–7μ.

United States: Massachusetts, Maine, New Jersey, Florida; Greenland, Finland, Norway, Sweden, Germany.
The peculiar repand appearance of the vegetative cells usually makes the identification of this species easy. Occasionally a single plant may lack this vegetative character and may thus be confused with B. rectangularis or B. varians.
37. **B. rectangularis** Wittrock.
 (Pl. VI, fig. 43.)
 1870, p. 142; 1874, p. 55; (?) *B. ignota* Wood 1872, p. 201; Hirn 1900, p. 359, Pl. LX, fig. 376; Collins 1909, p. 273; Heering 1914, p. 239, fig. 376; Tiffany 1928, p. 147, Pl. XIX, fig. 43; P. B. A. No. 516.

 Dioecious, nannandrous, gynandrosporous; oogonia ellipsoid, patent or more rarely erect, below terminal setae or androsporangia or more rarely vegetative cells; outer oospore wall longitudinally ribbed; androsporangia scattered or epigynous, 1-?; dwarf males near or occasionally on oogonia; antheridia exterior, 1-4; vegetative cells, subrectangular in cross section, 16-23X20-46a; oogonia 32-39X45-63μ; oospores 29-37X43-61μ; androsporangia 13-16X10-27μ; dwarf male stipes 14-18X22-27μ; antheridia 8-10X5-7μ.

 This species is usually characterized by its long and few branches and its nearly rectangular cells in cross section.

37a. **Var. hiloensis** Nordstedt.
 (Pl. VI, fig. 44.)
 1878, p. 22; Hirn 1900, p. 361, Pl. LX, fig. 377; Collins 1909, p. 274; Tiffany 1928, p. 147, Pl. XIX, fig. 44.

 Smaller, androsporangia generally epigynous; vegetative cells 14-19X24-48μ; oogonia 28-32X47-51μ; androsporangia 12-14X13-16μ; dwarf male stipes 13-14X22-24μ; antheridia 8-9X5-7μ.

 Australia; (?) Pennsylvania (U. S. A.). The only American record is that of Wolle.

38. **B. varians** Wittrock.
 (Pl. VI, fig. 48.)
 1870, p. 143; 1874, p. 53; Hirn 1900, p. 357, Pl. LIX, fig. 373; Heering 1914, p. 239, fig. 375; Tiffany 1926, p. 109, Pl. X, fig. 113; Tiffany 1928, p. 147, Pl. XIX, fig. 48.

 Dioecious, nannandrous, gynandrosporous; oogonia ovoid, patent or erect, below terminal setae or below androsporangial cells; outer oospore wall longitudinally ribbed, ribs serrate; androsporangia scattered, epigynous or hypogynous, 1-2; dwarf males on or near the oogonia, antheridia exterior, 1-3; vegetative cells 17-22X22-33μ; oogonia 30-36X44-54μ; oospores 28-34X42-52μ; androsporangial cells 14-17X14-18μ; dwarf male stipes 14-16X24-27μ; antheridial cells 8-10X5-7μ.

 United States: Iowa, Ohio, Illinois, Michigan, Alabama, Mississippi, Indiana; Canada, Europe.

38a. **Var. subsimplex** (Wittrock) Hirn.
 (Pl. VI, fig. 49.)
 1900, p. 357, Pl. LIX and LX, fig. 374; *B. pygmaea a. major* Pringsh. 1858, p. 74; *B. subsimplex* Witt. 1870, p. 142; 1874, p. 52; *B. varians* Wittr. var. *alpina* Witt. and Lund. in Wittrock 1874, p. 53; *B. dumosa* Wood 1872, p. 202; *B. reticulata* Nordst. var. *minor* Lemm. 1885, p. 25; Collins 1909, p. 273; Heering 1914, p. 239; Tiffany 1926, p. 110; 1928, p. 147, Pl. XIX, fig. 49.
The Oedogoniaceae

Smaller in nearly all parts; ribs of oospore serrulate or smooth; vegetative cells 13–18×16–34μ; oogonia 26–30×39–46μ; oospores 21–28×37–44μ; androsporangial cells 10–14×7–16μ; dwarf male stipes 11–14×15–24μ; antheridial cells 7–8×5–7μ.

United States: Iowa, Ohio, Mississippi, Illinois, Pennsylvania; Brazil, India, Europe, Australia; British Columbia.

38b. Var. hawaiensis Nordstedt.

1878, p. 21; Hirn 1900, p. 358, Pl. LX, fig. 375; Tiffany 1928, p. 148, Pl. XIX, fig. 50.

United States: Ohio, Illinois; Australia.

39. B. lagoensis Wittrock.

1874, p. 53; Hirn 1900, p. 361, Pl. LXI, fig. 378; Tiffany 1928, p. 148, Pl. XIX, fig. 46.

Dioecious, nannandrous; oogonia ellipsoid, erect or rarely patent, below vegetative cells; outer oospore wall longitudinally ribbed, the ribs dentate and connected by transverse lines; dwarf males near oogonia; antheridia exterior, 1–2; vegetative cells 18–23×23–35μ; oogonia 37–41×56–63μ; oospores 35–39×54–61μ; dwarf male stipes 15–17×24–25μ; antheridia 9–10×7–8μ.

Brazil.

40. B. rhadinospora Wittrock.

1874, p. 53; Hirn 1900, p. 372, Pl. LXIII and LXIV, fig. 393; Heering 1914, p. 242, fig. 383; Tiffany 1928, p. 148, Pl. XXI, fig. 66.

Dioecious, nannandrous, gynandrosporous; oogonia fusiformly ellipsoid, patent or rarely erect, below androsporangia or terminal setae or rarely vegetative cells; outer wall of oospore longitudinally ribbed, ribs smooth; androsporangia epigynous or rarely scattered, 1–2; dwarf males on or near oogonia; antheridia exterior, 1–4; vegetative cells 15–22×20–44μ; oogonia 29–37×61–80μ; oospores 27–35×59–78μ; androsporangia 13–17×16–23μ; dwarf male stipes 13–16×23–25μ; antheridia 7–9×6–8μ.

Sweden.

40a. Forma antiqua (Nordstedt) Hirn.

1900, p. 372, Pl. LXIV, fig. 394; Nordstedt 1883, p. 154; B. varians Witt. var. antiqua Nordstedt in Borge 1896, p. 4; Tiffany 1928, p. 148, Pl. XXI, fig. 67.

Australia.
40b. Var. litoralis Hirn.

(Pl. VIII, fig. 68.)

1900, p. 373, Pl. LXIV, fig. 395; Tiffany 1928, p. 149, Pl. XXI, fig. 68.

Sweden.

This variety is the only Bulbochaete known to inhabit brackish waters.

41. B. minor Al. Braun.

(Pl. VII, fig. 54.)

In Kuetzing 1849, p. 422; Wittrock 1874, p. 54; Hirn 1900, p. 369, Pl. LXIII, fig. 300; Collins 1909, p. 275; Heering, p. 242; Tiffany 1926, Pl. X, fig. 114; 1928, p. 149, Pl. XX, fig. 54.

Dioecious, nannandrous, gynandrosporous; oogonia ovoid, erect or rarely patent, below terminal setae, androsporangial cells, or more rarely vegetative cells; outer oospore wall longitudinally ribbed; androsporangia epigynous, subepigynous, or scattered, 1–7; dwarf males on or near oogonia; antheridium exterior, 1–4; vegetative cells 18–25×27–50μ; oogonia 32–42×59–69μ; oospores 30–40×57–67μ; androsporangia 15–16×16–21μ; dwarf male stipes 12–15×22–24μ; antheridia 6–10×6–7μ.

United States: Iowa, Indiana, Illinois, New Jersey; Germany, Sweden, Austria, England.

41a. Var. germanica Hirn.

(Pl. VII, fig. 55.)

1900, p. 370, Pl. LXIII, fig. 391; (?) B. minor Al. Br. in De Bary 1854, p. 72; B. minor Al. Br. in Pringsheim 1858, p. 74; Heering 1914, p. 242, fig. 382; Tiffany 1928, p. 149, Pl. XX, fig. 55.

Germany.

This variety on the basis of dimensions and habit seems scarcely tenable. I have not been able to examine the original material, however, and have followed Hirn’s disposition of it.

42. B. bullardi Transeau and Tiffany.

(Pl. VII, figs. 52 and 53.)

1919, p. 241, Pl. XIV, figs. a–e; Tiffany 1928, p. 149, Pl. XX, figs. 52 and 53.

Dioecious, nannandrous, idioandrosporous; oogonia ovoid-ellipsoid or ellipsoid, erect, terminated by long setae, pore evident and supra-median; oospores filling or nearly filling oogonia, ribs of outer wall of oospore dentate, the teeth connected by transverse lines, longitudinal ribs uniting irregularly; androsporangia 1–6; dwarf males slightly curved, on oogonia or suffultory cells or vegetative cells; antheridia exterior, 1–3; vegetative cells 20–32×60–165μ; oogonia 56–66×70–96μ;
oospores 54-64×67-94μ; androsporangia 18-21×15-33μ; dwarf male stipes 18-21×30-33μ; antheridia 9-14×6-10μ.

United States: Massachusetts.

The combination of dimensions and oospore markings rather readily separates this species from B. imperialis and B. insignis, its nearest relatives.

43. B. denticulata Wittrock.

(Pl. VI, fig. 51.)

1874, p. 54; Hirn 1900, p. 362, Pl. LXI, fig. 379; Heering 1914, p. 240, fig. 377; Tiffany 1928, p. 150, Pl. XIX, fig. 51.

 Dioecious, nannandrous; oogonia broadly ellipsoid, patent, below terminal setae or rarely vegetative cells; outer oospore wall longitudinally ribbed, ribs often anastomosing; dwarf males on or near oogonia; antheridia exterior, 1-2; vegetative cells 27-30×34-45μ; oogonia 48-54×69-76μ; oospores 46-52×67-74μ; dwarf male stipes 18-21×30-31μ; antheridia 13-14×8-10μ.

Norway.

44. B. affinis Hirn.

(Pl. VII, fig. 61.)

1900, p. 371, Pl. LXIII, fig. 392; B. minor Al. Br. in Borge 1896, p. 4; Tiffany 1928, p. 150, Pl. XX, fig. 61.

 Dioecious, nannandrous, gynandrosporous; oogonia suboblong-ellipsoid to ellipsoid, patent or rarely erect, below terminal setae or androsporangia; outer oospore wall longitudinally ribbed, androsporangia epigynous, 1-7; dwarf males near or on oogonia, antheridia exterior, 1-3; vegetative cells 22-27×27-47μ; oogonia 40-46×67-78μ; oospores 38-44×65-76μ; androsporangia 18-19×23-30μ; dwarf male stipes 17-19×22-28μ; antheridia 9-12×9-13μ.

Australia.

45. B. anomala Pringsheim.

(Pl. VI, fig. 45.)

1858, p. 73, Pl. 6, fig. 6; Wittrock 1874, p. 56; Hirn 1900, p. 366, Pl. LXII, fig. 385; Heering 1914, p. 240, fig. 380; Tiffany 1928, p. 150, Pl. XIX, fig. 45.

 Dioecious, nannandrous; oogonia ellipsoid, erect, below vegetative cells; dwarf males near oogonia; antheridia exterior, 1-2; vegetative cells 26-27×52-54μ; oogonia 49-51×75-80μ; oospores 47-48×73-78μ; dwarf male stipes 18×37μ; antheridia 13×13μ.

Germany.

46. B. insignis Pringsheim.

(Pl. VIII, fig. 62.)

1858, p. 73, Pl. 6, fig. 7; (?) B. pringsheimiana Archer 1866, p. 121; B. speciosa Wittr. 1870, p. 143; Wittrock 1874, p. 55; (?) B. pachyderma Reinsch 1875, p. 82; (?) B. anomala Pringsheim in Nordstedt 1888, p. 8; Hirn 1900, p. 364, Pl. LXII, fig. 383; Collins 1909, p. 274; Heering 1914, p. 240, fig. 379; Tiffany 1928, p. 150, Pl. XXI, fig. 62; P. B. A. Nos. 1332 and 1430.

 Dioecious, nannandrous, gynandrosporous; oogonia ellipsoid, erect or patent, below androsporangia or terminal setae or vegetative cells; oospores ellipsoid with broadly denticulate longitudinal ribs on the
Bulbochaete

outer oospore wall; androsporangia epigynous or scattered, 1–3; dwarf males near or on oogonia; antheridia exterior, 1–2; vegetative cells 19–25×48–88μ; oogonia 46–56×70–90μ; oospores 44–54×68–88μ; androsporangia 16–20×9–25μ; dwarf male stipes 16–19×29–33μ; antheridia 10–13×7–10μ.

United States: Massachusetts, Michigan, Illinois, New York, New Jersey, Alaska; Europe, Australia.

46a. Var. reticulata (Nordstedt) Hrn.

(Pl. VIII, fig. 63.)

1900, p. 365, Pl. LXII, fig. 384; B. reticulata Nordst. 1877, p. 32; Collins 1909, p. 275; Tiffany 1928, p. 151, Pl. XXI, fig. 63.

Outer wall of oospore reticulate-dentate, with doubly dentate, occasionally anastomosing, longitudinal ridges, the teeth united to each other by transverse ridges; vegetative cells 20–25×40–87μ; oogonia 44–52×66–85μ; oospores 42–50×64–83μ; androsporangia 16–19×13–23μ; dwarf male stipes 17–20×30–33μ; antheridia 11–13×6–9μ.

United States: Massachusetts, Illinois; Sweden, Denmark.

47. B. imperialis Wittrock.

(Pl. VIII, fig. 64.)

1874, p. 54; Hirn 1900, p. 367, Pl. LXII, fig. 386; Tiffany 1928, p. 151, Pl. XXI, fig. 64.

Dioecious, nannandrous, gynandrosporous; oogonia broadly ellipsoid, erect, terminated by setae; outer oospore wall longitudinally ribbed, the ribs irregularly anastomosing or connected by transverse ribs; androsporangia scattered, 1–7; dwarf males on or near oogonia; antheridia exterior, 1–2 celled; vegetative cells 26–31×32–106μ; oogonia 81–83×104–108μ; oospores 79–81×102–106μ; androsporangia 18–20×25–26μ; dwarf male stipes 19–21×30–35μ; antheridia 13–16×7–9μ.

Brazil.

47a. Var. regalis Wittrock.

(Pl. VIII, fig. 65.)

1874, p. 55; Hirn 1900, p. 367, Pl. LXII, fig. 387; Tiffany 1928, p. 151, Pl. XXI, fig. 65.

Smaller than the type; vegetative cells 24–26×72–117μ; oogonia 68–70×88–90μ; dwarf male stipe 20×39μ; antheridia 15–16×6–7μ.

Brazil.

48. B. spirogranulata West and West.

(Pl. VII, figs. 57 and 58.)

1902, p. 126, Pl. 17, figs. 8 and 9; Hirn 1906, p. 27, Pl. IV, fig. 29.

Oogonia oblong-ellipsoid, subpatent; outer wall of oospore thick with longitudinal, crenulate ribs; androsporangia scattered; suffrultory cells without division; setae long; vegetative cells, spirally granulate, 9–12×31–57μ; oogonia 20–24×48–49μ; androsporangia 7–8×9–10μ.

Heneratgodha, Ceylon.
The vegetative cells of this species are minutely granulate, with the markings spirally arranged. This character is rather unique among the ellipsoid members of the genus.

49. **B. brevifulta** Wittrock.
 (Pl. VII, fig. 56.)
 1874, p. 57; Hirn 1900, p. 373, Pl. LXI, fig. 382; Tiffany 1928, p. 152, Pl. XX, fig. 56.

 Oogonia broadly ellipsoid, erect, terminated by setae; oospores with outer wall longitudinally and irregularly ribbed; vegetative cells 10–24 × 38–72 μ; oogonia 34–42 × 50–56 μ; oospores 32–40 × 48–54 μ.

 Brazil.

 This description is quite incomplete and the position of the species must be considered temporary until more data can be secured.

50. **B. sanguinea** Hansgirg.

 Few celled and little branched; cell walls 2–3 μ thick; vegetative cells 26–35 × 24–50 μ, with contents blood-red in color; reproductive cells unknown.

 Austria.

 Hansgirg gives no figures for this interesting form, but compares it in habit with *B. minor*. A somewhat similar species, *B. purpurea* Corda (Hansgirg *loc. cit.*) with purple-red vegetative cells alternating with colorless empty cells, was described from Bohemia. Cleve (1895) also observed a red Bulbochaete, collected in October, 1894. Until more is known of the reproductive structures of these forms, their specific position must be merely a provisional record.

51. **B. horrida** Nordstedt.
 (Pl. VI, fig. 42.)
 1900, p. 355, Pl. LIX, fig. 371; Tiffany 1928, p. 152, Pl. XIX, fig. 42.

 Dioecious, nannandrous; vegetative cells medianly plicate; oogonia ellipsoid; antheridia of dwarf males 1–7; vegetative cells 16–25 × 12–25 μ; basal cells 17–20 × 10–20 μ.

 South America.

 Little is known of the reproduction of this interesting species, and figures are available only for the vegetative cells. The median plications of the latter, however, readily separate it from any other species of the genus known at the present time. Hirn’s record of Lagerheim’s collections in the Guianas in which dwarf males and ellipsoid oogonia were seen is our only information regarding the fructification of the species.
Genus II. Oedocladium Stahl.

1891, p. 339; Hirn 1900, p. 374; Collins 1918, p. 71; Lewis 1930.

Terrestrial or aquatic, branching, rhizoidal; if terrestrial, partly subterranean and subhyaline, partly above ground and green; vegetative cell cylindrical or nearly so, growth chiefly by division of terminal cell of a filament or branch; asexual reproduction by "akinetes" and zoospore; oogonium arising by a simple division of a vegetative cell; sexual reproduction both monoecious and dioecious, nannandrous.

KEY TO THE SPECIES OF OEDOCLADIUM.

1. Monoecious, terrestrial... 2
2. Oogonium single, mostly terminal, subglobose with conical apex (if terminal), pore inferior; oospore globose, not filling oogonium, spore wall of three layers: outer layer smooth, middle layer angulate (in optical section undulate), inner layer smooth; antheridium to 9; vegetative cell subcylindrical; terminal cell with conical apex; vegetative cell 25–40×50–150μ, rhizoidal 4–10×(up to)350μ; oogonium 90×95μ; oospore 69×69μ; antheridium 20–25×8–19μ; zoospore 32–50μ.

1. O. protonema Stahl.

(Pl. LXIII, figs. 619-623.)

1891, p. 347, Pl. XVI, figs. 1–6, Pl. XVII, figs. 1–12; Hirn 1900, p. 374, Pl. LXIV, fig. 396.

Monoecious; oogonium single, subglobose, rarely terminal, pore median; oospore globose, filling oogonium, spore wall smooth; antheridium scattered, 1–6; vegetative cell 7×20μ, rhizoidal 3×(up to)300μ; oogonium 50–76×58–76μ; oospore 45–60×45–60μ.

Germany (Strassburg).

2. O. albemarlensis Lewis.

(Pl. LXIII, figs. 613-617.)

In Collins (as O. albeinarlense Lewis) 1918, p. 71, Pl. III, figs. 22a and 22b.

Monoecious; oogonium single, mostly terminal, subglobose with conical apex (if terminal), pore inferior; oospore globose, not filling oogonium, spore wall of three layers: outer layer smooth, middle layer angulate (in optical section undulate), inner layer smooth; antheridium to 9; vegetative cell subcylindrical; terminal cell with conical apex; vegetative cell 25–40×50–150μ, rhizoidal 4–10×(up to)350μ; oogonium 90×95μ; oospore 69×69μ; antheridium 20–25×8–19μ; zoospore 32–50μ.

United States: Virginia (on sandy loam, bank of the Rivanna, near Charlottesville, Albemarle County) growing with Vaucheria and Riccia. Collected by Professor I. F. Lewis.
3. **O. media** Lewis nov. sp. mss.
 (Pl. LXI, figs. 601-603.)

Monoecious; oogonium single, mostly terminal, globose to sub-globose, with conical apex (if terminal), pore median; oospore globose, not quite filling oogonium, spore wall with middle layer angulate or smooth; antheridium 1-2; terminal cell with conical apex; vegetative cell 12-18×56-78μ, rhizoidal 10×(up to)270μ; oogonium 52×52μ; oospore 44×44μ; antheridium 15×9-15μ.

United States: Massachusetts (Woods Hole). Collected by Professor I. F. Lewis.

4. **O. hazenii** Lewis nov. sp. mss.
 (Pl. LXII, figs. 604-612.)

Dioecious, nannandrous, gynandrosporous; oogonium globose to subglobose, terminal or intercalary, pore inferior; oospore globose, not or nearly filling oogonium, spore wall with middle layer angulate; androsporangium 1-2, epigynous, subepigynous, or scattered; dwarf male curved or erect, on suffultory cell or more rarely on oogonium; antheridium exterior, single; vegetative cell 15-26×47-132μ, rhizoidal 4×(up to)425μ; oogonium 50-75×50-75μ; oospore 45-55×45-55μ; androsporangium 16×7-12μ; dwarf male stipe 18-22×7-10μ; antheridium 6-8×6-7μ.

United States: New Jersey. Collected by Professor T. E. Hazen.

O. hazenii is the only dioecious, nannandrous species of the genus as well as the only aquatic member, so far recorded.

Data for descriptions and plates of *Oedocladium media* and *O. hazenii* were supplied by Professor I. F. Lewis of the University of Virginia. Lewis' *O. hazenii* makes it necessary to emend Stahl's original description of the genus to include this nannandrous species growing in an aquatic habitat.
Genus III. Oedogonium Link.

1820, p. 5; Pringsheim 1858, p. 68; Wittrock 1874, p. 6; Hirn 1900, p. 72; Collins 1909, p. 223; Prolifera Vaucher 1803, p. 14; Vesiculifera Hassall 1845, p. 195; Cymatonea Kuetzing 1849, p. 375; Androgynia Wood 1872, p. 196; Pringsheimia Wood 1872, p. 195; Conferea (early authors).

Filaments single, unbranched; vegetative cells cylindrical, or sometimes capitellate, nodulose or undulate; basal cell with holdfast; terminal cell obtuse, apiculate, or hyaline; all vegetative cells, except the basal one, capable of division; oogonia and antheridia produced by direct division of vegetative cells.

KEY TO THE SPECIES, VARIETIES, AND FORMS OF OEDOGONIUM

1. Vegetative cell undulate or nodulose .. 2
1. Vegetative cell punctate or granulate 6
1. Vegetative cell distinctly capitellate ... 7
1. Vegetative cell cylindrical .. 35
1. Vegetative cell subhexagonal or subellipsoid 236. *Oe. reinschii*
2. Without dwarf male ... 3
2. With dwarf male ... 4
3. Diameter of oogonium 18–23μ .. 105. *Oe. sphaerandrium*
3. Diameter of oogonium 48–57μ .. 96. *Oe. nodulosum*
3. Diameter of oogonium 64–74μ .. 96a. *Oe. nodulosum var. commune*
4. Diameter of oogonium 44–56μ .. 5
4. Diameter of oogonium 58–68μ .. 119a. *Oe. undulatum var. americanum*
5. Dwarf male 36–46μ in length ... 119b. *Oe. undulatum f. senegalense*
5. Dwarf male 48–70μ in length ... 119. *Oe. undulatum*
6. Diameter of vegetative cell 6–8μ .. 155. *Oe. elegans*
6. Diameter of vegetative cell 9–13μ .. 84. *Oe. minus*
6. Diameter of vegetative cell 16–22μ .. 85. *Oe. punctatostrictum*
7. Without dwarf male .. 8
7. With dwarf male .. 17
8. Reproductive structures imperfectly known 34
8. Dioecious ... 9
8. Monoecious .. 11
9. Division of oogonium basal .. 78. *Oe. inflatum*
9. Division of oogonium inferior .. 77. *Oe. inversum*
9. Division of oogonium median .. 10
9. Division of oogonium supramedian or superior 89. *Oe. mitratum*
10. Oogonium 26–29μ in diameter .. 79a. *Oe. howardii var. minus*
10. Oogonium 29–32μ in diameter .. 79. *Oe. howardii*
10. Oogonium 32–36μ in diameter .. 81. *Oe. latiusculum*
11. Oogonium opening by a pore ... 20a. *Oe. hirnii var. africanum*
11. Oogonium opening by a lid ... 12
12. Diameter of oogonium 15–23μ .. 13
12. Diameter of oogonium 34–46μ .. 16
13. Division of oogonium median .. 14
13. Division of oogonium supramedian .. 15
14. Oogonium subdepressed-globose .. 86. *Oe. capitellatum*
14. Oogonium angular-globose .. 87. *Oe. quadратum*
15. Diameter of oogonium 15–20μ .. 210. *Oe. vircehurgense*
15. Diameter of oogonium 18–23μ .. 105. *Oe. sphaerandrium*
15. Diameter of oogonium 20–24μ .. 211. *Oe. spirum*

*Species so marked have incomplete descriptions and are included in what is perhaps their probable position in the genus, using such characters as are available.
16. Vegetative cell punctate. 84. Oe. minus
16. Vegetative cell not punctate. 88. Oe. bohemicum
17. Poriferous 120. Oe. nebraskense
17. Operculate 18
18. Division of oogonium median. 19
18. Division of oogonium supramedian. 24
18. Division of oogonium inframedian. 26
18. Division of oogonium superior. 156. Oe. rigidum
18. Division of oogonium supreme. 29
19. Division of oogonium narrow. 20
19. Division of oogonium wide. 21
20. Oogonium 28-35 × 23-38µ. 171a. Oe. decipiens f. dissimile
20. Oogonium 46-54 × 44-54µ. 157. Oe. bengalense
20. Oogonium 57-64 × 48-53µ. 158. Oe. indicum
21. Diameter of ooscore 22-26µ. 22
22. Gynandrosporous. 160. Oe. areschougi
22. Idioandrosporous. 160a. Oe. areschougi var. americanum
23. Vegetative cell 14-19µ in diameter. 157. Oe. bengalense
23. Vegetative cell 19-26µ in diameter. 161. Oe. confertum
24. Diameter of oogonium 14-26µ. 163. Oe. clavatum
24. Diameter of oogonium 27-42µ. 25
25. Oogonium 25-32µ in length. 164. Oe. oelandicum
26. Oogonium 40-45µ in length. 165. Oe. megaporum
26. Sulfutory cell enlarged. 167b. Oe. platygynum var. continuum
26. Sulfutory cell not enlarged. 27
27. Diameter of vegetative cell 6-10µ. 28
27. Diameter of vegetative cell 12-15µ. 166. Oe. bahusiense
28. Gynandrosporous only. 167c. Oe. platygynum var. novozelandiae
28. Idioandrosporous only. 167a. Oe. platygynum f. obtusum
28. Gynandrosporous and idioandrosporous. . 167. Oe. platygynum
29. Oospare wall smooth. 30
29. Oospare wall longitudinally ribbed. 194. Oe. michiganense
30. Idioandrosporous. 31
30. Gynandrosporous. 32
31. Oogonium 48-60 × 62-74µ. 190. Oe. praticolium
31. Oogonium 66-78 × 72-90µ. 191. Oe. suprema
32. Diameter of oogonium 36-42µ. 192. Oe. wabashense
32. Diameter of oogonium 42-55µ. 33
32. Diameter of oogonium 55-58µ. 189a. Oe. obtusatum var. complanatum
33. Length of oogonium 56-68µ. 189. Oe. obtusatum
33. Length of oogonium 68-75µ. 189b. Oe. obtusatum var. ellipsoidum
34. Vegetative cell 2-3µ in diameter. 203. Oe. fusus*
34. Vegetative cell 4-6µ in diameter. 210. Oe. virecargense*
34. Vegetative cell 6-13µ in diameter. 211. Oe. spartium*
35. Diameter of vegetative cell not more than 2µ. 197. Oe. augustoissimum*
35. Diameter of vegetative cell 2-50µ. 36
36. Diameter of vegetative cell (56-) 60-93µ. . 268
36. Without dwarf males. 37
36. With dwarf males. 186
37. Oogonium opening by a pore. 38
37. Oogonium opening by a lid. 139
38. Pore median. 39
38. Pore supramedian (rarely varying to superior). . 51
38. Pore superior†. 63

*See footnote, page 53.
†Some variations of Oe. varia may be sought here.
39. Wall of oospore smooth 40
39. Wall of oospore scrobiculate 49
39. Wall of oospore echinate 50
40. Monoecious 41
40. Dioecious 44
41. Diameter of oogonium 18–28µ 42
41. Diameter of oogonium 32–38µ 42
42. Filament irregularly curved 2. Oe. curvum
42. Filament straight 43
43. Oogonium 23–28 × 26–31µ 3. Oe. cryptoporum
43. Oogonium 18–25 × 18–20µ 3a. Oe. cryptoporum var. vulgare
43. Diameter of oogonium 22–27µ 45
44. Diameter of oogonium 27–32µ 47
44. Diameter of oogonium 30–39µ 48
45. Diameter of vegetative cell 5–10µ 46
45. Diameter of vegetative cell 8–13µ 4b. Oe. rufescens var. lundellii
46. Diameter of vegetative cell 5–9µ 4a. Oe. rufescens var. exiguum
46. Diameter of vegetative cell 8–10µ 4. Oe. rufescens
47. Diameter of vegetative cell 9–11µ 218a. Oe. inerme var. mentiens*
47. Diameter of vegetative cell 11–14µ 5. Oe. calcareae
48. Oospore 33–35 × 28–32µ 218. Oe. inerme*
49. Monoecious 7. Oe. cryptoporum
49. Dioecious (very rarely monoecious) 8. Oe. magnusii
50. Diameter of vegetative cell 9–14µ 9. Oe. sucicicum
50. Diameter of vegetative cell 14–16µ 9a. Oe. sucicicum f. australis
60a. Oe argenteum f. michiganense 217. Oe. moniliforme*
51. Oospore scrobiculate, 22–27µ in diameter 217. Oe. moniliforme*
51. Oospore scrobiculate, 43–48µ in diameter, 217. Oe. moniliforme*
52. Monoecious 52
53. Dioecious 53
52. Both monoecious and dioecious 58
53. Pore a little above median 54
53. Pore nearly superior 56
53. Pore variable between these two positions 57
54. Diameter of oogonium 34–45µ 55
54. Diameter of oogonium 40–55µ 11. Oe. urbicatum
55. Oospore depressed-globose, 30–34 × 28–32µ 12. Oe. obsoletum
56. Oospore 31–41 × 30–41µ 10. Oe. varians
57. Terminal cell narrowed and often setiferous 225. Oe. inflatum*
57. Terminal cell neither narrowed nor setiferous 11. Oe. urbicatum
58. Pore a little above median 59
58. Pore nearly superior 60
58. Pore variable between these two positions 60
59. Vegetative cell 1–3 diameters long 62
59. Vegetative cell 3–7 diameters long 15b. Oe. cardiacum f. pulchellum
59. Vegetative cell 3–7 diameters long 15. Oe. cardiacum
60. Diameter of vegetative cell 8–12µ 16. Oe. franklinianum
60. Diameter of vegetative cell 12–16µ 10. Oe. varians
60. Diameter of vegetative cell 14–30µ 61
61. Oospore depressed-globose, 31–42µ in diameter, 61
61. Oospore subglobose, 42–49µ in diameter 17. Oe. glabrum
61. Oospore globose, 43–58µ in diameter 15a. Oe. cardiacum f. interjectum
61. Oospore ellipsoid-globose, 40–52µ in diameter, 15c. Oe. cardiacum var. carbonicum
62. Oospore not filling oogonium 225. Oe. inflatum*
62. Oospore completely filling oogonium 18. Oe. luteoaurinum

*See footnote, page 53.
63. Wall of oospore smooth .. 64
63. Wall of oospore longitudinally ribbed 116
63. Wall of oospore arculate .. 120
63. Wall of oospore reticulate .. 131
63. Wall of oospore pitted .. 132
63. Wall of oospore scrobiculate .. 133
64. Monoecious .. 65
64. Dioecious .. 83
64. Reproductive structures imperfectly known 113
65. Diameter of vegetative cell 8-34μ .. 66
65. Diameter of vegetative cell 39-54μ ... 80
66. Diameter of oogonium 32-36 (-40)μ 67
66. Diameter of oogonium 36-63μ .. 70
66. Diameter of oogonium 63-68μ ... 20a. Oe. upsaliense var. fennicum 68
67. Vegetative cell 8-14μ in diameter 19. Oe. intermedium 69
67. Vegetative cell 15-18μ in diameter .. 72
68. Length of oogonium 32-46μ .. 73
68. Length of oogonium about 53μ ... 71
69. Oospore 28-31μ in diameter .. 20. Oe. hirnii
69. Oospore 30-37 (-40)μ in diameter .. 21. Oe. globosum
70. Plant few celled when mature .. 72
70. Plant many celled when mature .. 74
71. Antheridium single, alternating with vegetative cell 22. Oe. zigzag
71. Antheridium 1-4, in series ... 73
72. Oospore globose to subglobose .. 23. Oe. curtum
72. Oospore obovoid to ellipsoid ... 77
73. Diameter of vegetative cell 12-19μ .. 74
73. Diameter of vegetative cell 19-34μ .. 76
74. Oospore completely filling oogonium 75
74. Oospore not filling oogonium .. 87
75. Antheridium 1-3 ... 24. Oe. fragile
75. Antheridium 3-6 ... 24a. Oe. fragile var. abyssinicum
76. Oogonium usually globose .. 24b. Oe. fragile var. robustum
76. Oogonium usually ovoid .. 25. Oe. vaucherii
77. Division of antheridium horizontal .. 78
77. Division of antheridium vertical ... 79
78. Vegetative cell 8-14μ in diameter .. 78
78. Vegetative cell 14-24μ in diameter .. 79
79. Oogonium 40-44 X 70-90μ ... 28. Oe. sodiroanum
79. Oogonium 45-50 X 66-100μ ... 29. Oe. upsaliense
79. Oogonium 48-53 X 65-80μ ... 30. Oe. oviforme
80. Diameter of oogonium 53-67μ .. 81
80. Diameter of oogonium 68-95μ .. 82
81. Diameter of vegetative cell 37-48μ ... 31. Oe. geniculatum
81. Diameter of vegetative cell 50-54μ ... 32. Oe. suboctangulatum
82. Diameter of vegetative cell 33-37μ ... 33. Oe. martiniense
82. Diameter of vegetative cell 44-52μ ... 34. Oe. kurzii
83. Diameter of vegetative cell 11-13μ ... 223. Oe. lageniforme*
83. Diameter of vegetative cell 14-56μ ... 84
84. Oogonium scarcely exceeding vegetative cell in diameter 85
84. Oogonium noticeably exceeding vegetative cell in diameter 86
85. Oospore globose to cylindric-globose 35. Oe. capillare
85. Oospore cylindric-globose to subcylindrical 35a. Oe. capillare f. stagnale
85. Oospore subrectangular-ellipsoid .. 32. Oe. suboctangulatum
86. Oospore globose, subglobose, or cylindric-globose 87
86. Oospore ellipsoid, obovoid, subcylindrical, or subellipsoid 95
87. Male filament of same diameter as female 88
87. Male filament smaller than female ... 90
88. Oogonium 36-42μ in diameter .. 36a. Oe. plagiosistomum var. gracilius
88. Oogonium 42-49μ in diameter .. 36. Oe. plagiosistomum
88. Oogonium 54-63μ in diameter .. 89

*See footnote, page 53.
89. Vegetative cell 16-26 × 112-250μ. 17. Oe. glabrum
89. Vegetative cell 33-42 × 42-130μ. 38. Oe. princeps
90. Diameter of male vegetative cell 18-33μ. 91
90. Diameter of male vegetative cell 34-50μ. 94
91. Oospore usually ellipsoid to cylindric-globose. 37. Oe. capilliforme
91. Oospore usually globose to subglobose. 92
92. Division of antheridium horizontal. 93
92. Division of antheridium vertical. 39. Oe. biforme
93. Oogonium 40-53 × 40-65μ. 37b. Oe. capilliforme f. lorentzii
93. Oogonium 46-57 × 52-64 (-80μ) 37a. Oe. capilliforme f. debaryanum
93. Oogonium 36-53 × 43-60μ. 37c. Oe. capilliforme var. australis
94. Oogonium 46-56μ in diameter. 37d. Oe. capilliforme var. diversum
94. Oogonium 54-65μ in diameter. 40. Oe. anomalum
94. Oogonium 70-85μ in diameter. 42. Oe. rivulare
95. Diameter of oogonium 35-63 (68μ). 106
95. Diameter of oogonium (60-) 63-90μ. 96
96. Male filament larger than female. 43. Oe. pachyandrium
96. Male filament not larger than female. 97
97. Vegetative cell 1-3 diameters long. 98
97. Vegetative cell 2-6 diameters long. 100
97. Vegetative cell 3-11 diameters long. 102
98. Oospore 40-60μ long. 35a. Oe. capillare f. siaguale
98. Oospore 60-80μ long. 99
99. Diameter of oospore 41-51μ. 209a. Oe. oryza var. serioporum*
99. Diameter of oospore 40-56μ. 209a. Oe. oryza var. serioporum*
99. Diameter of oospore 51-60μ. 44. Oe. mexicanum
100. Cell diameter of male filament 18-28μ. 101
100. Cell diameter of male filament 28-33μ. 45. Oe. grande
100. Cell diameter of male filament 32-42μ. 45d. Oe. grande var. majus
101. Oogonium usually obovoid. 45b. Oe. grande var. aequatoria
101. Oogonium usually subobovoid. 39. Oe. biforme
102. Division of antheridium horizontal. 103
102. Division of antheridium vertical. 103
103. Oogonium usually subobovoid. 45b. Oe. grande var. aequatoria
103. Oogonium usually obovoid. 39. Oe. biforme
103. Oogonium usually cylindric-obovoid. 39. Oe. biforme
103. Oogonium usually subovoid or ellipsoid-ovoid. 104
104. Diameter of oogonium 42-52μ. 45c. Oe. grande var. angustum
104. Diameter of oogonium 49-68μ. 105
105. Diameter of vegetative cell 20-21μ. 45a. Oe. grande f. gemelliparum
105. Diameter of vegetative cell 28-31μ. 45. Oe. grande
105. Diameter of vegetative cell 30-40μ. 45d. Oe. grande var. majus
106. Oospore conspicuously not filling oogonium. 42. Oe. rivulare
106. Oospore nearly or quite filling oogonium. 107
107. Vegetative cell 1-6 diameters long. 108
107. Vegetative cell 6-10 diameters long. 47. Oe. subrectum
108. Cell diameter of male filament 30-37μ. 109
108. Cell diameter of male filament 30-50μ. 110
109. Oospore obovoid to ellipsoid. 48. Oe. landsboroughi
109. Oospore ellipsoid to globose-ellipsoid. 49. Oe. crassum
110. Length of oospore 77-100μ. 111
110. Length of oospore 100-125μ. 49b. Oe. crassum var. longum
111. Diameter of oogonium 64-75μ. 48a. Oe. landsboroughi var. norvegicum
111. Diameter of oogonium 75-90μ. 112
112. Vegetative cell 1-3 diameters long. 49a. Oe. crassum f. amplum
112. Vegetative cell 3-5 diameters long. 49c. Oe. crassum var. subamplus
113. Diameter of vegetative cell 6-24 (-27μ) 114
113. Diameter of vegetative cell 24-42μ. 115

*See footnote, page 53.
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>55c.</td>
<td>Oe. bosci i. dispars</td>
</tr>
<tr>
<td>57b.</td>
<td>Oe. crenulatocostatum var. aureum</td>
</tr>
<tr>
<td>59.</td>
<td>Oe. margaritiferum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>60a.</td>
<td>Oe. dictyosporum</td>
</tr>
<tr>
<td>57.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57c.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>58.</td>
<td>Oe. crenulatocostatum var. aureum</td>
</tr>
<tr>
<td>60.</td>
<td>Oe. dictyosporum</td>
</tr>
<tr>
<td>56.</td>
<td>Oe. margaritiferum</td>
</tr>
<tr>
<td>55.</td>
<td>Oe. bosci</td>
</tr>
<tr>
<td>53.</td>
<td>Oe. paludosum var. parvisporum</td>
</tr>
<tr>
<td>54.</td>
<td>Oe. leiopleuron</td>
</tr>
<tr>
<td>53a.</td>
<td>Oe. paludosum var. americanum</td>
</tr>
<tr>
<td>53b.</td>
<td>Oe. paludosum var. parvisporum</td>
</tr>
<tr>
<td>53a.</td>
<td>Oe. paludosum var. americanum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>57.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57c.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>55.</td>
<td>Oe. bosci</td>
</tr>
<tr>
<td>54.</td>
<td>Oe. leiopleuron</td>
</tr>
<tr>
<td>53.</td>
<td>Oe. paludosum var. parvisporum</td>
</tr>
<tr>
<td>53a.</td>
<td>Oe. paludosum var. americanum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>57.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57c.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>53b.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>53a.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>57.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57c.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>53b.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>53a.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>57.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57c.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>53b.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>53a.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>57.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57c.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>53b.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>53a.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>57.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57c.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>53b.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>53a.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>57.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57c.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>53b.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>53a.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>57.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57c.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>53b.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>53a.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>57.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57c.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>53b.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>53a.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>57.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57c.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>53b.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>53a.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>57.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57c.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>53b.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>53a.</td>
<td>Oe. paludosum</td>
</tr>
<tr>
<td>57a.</td>
<td>Oe. crenulatocostatum f. cylindricum</td>
</tr>
<tr>
<td>57.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
<tr>
<td>57c.</td>
<td>Oe. crenulatocostatum var. longiarcticum</td>
</tr>
</tbody>
</table>
WITHOUT DWARF MALES; OPERULATE OOGONIUM, CYLINDRICAL
VEGETATIVE CELLS.

139. Wall of oospore echinate. 212. Oe. velatum*
139. Wall of oospore punctate-granulate. 100a. Oe. crisum f. granulosum
139. Wall of oospore longitudinally ribbed. 140
139. Wall of oospore smooth. 145
140. Division of oogonium superior. 141
140. Division of oogonium supreme. 70. Oe. pseudacrosporum
141. Ribs 15-23 in number. 142
141. Ribs 30-50 in number. 143
142. Diameter of oogonium 48-52a. 71a. Oe. paucocostatum var. gracilis
142. Diameter of oogonium 54-60a. 71. Oe. paucocostatum
142. Diameter of oogonium 59-74a. 72. Oe. australianum
143. Dioecious. 73. Oe. inurnulum
143. Monoecious. 144
143. Reproductive structures imperfectly known. 219. Oe. sol*
144. Oospore 48-55 X 50-58u. 74. Oe. nobile
144. Oospore 58-59 X 72-80u. 74a. Oe. nobile var. minus
144. Oospore 65-75 X 88-104u. 75. Oe. insigne
145. Oogonium without projections. 146
145. Oogonium with projections. 184
146. Oospore with a median constriction. 147
146. Oospore without a median constriction. 148
147. Oogonium medianly plicate. 76. Oe. eutsch
147. Oogonium not medianly plicate. 292. Oe. luteatum*
148. Division of oogonium median. 149
148. Division of oogonium supramedian. 155
148. Division of oogonium superior. 157
148. Division of oogonium inferior. 77. Oe. inversum
148. Division of oogonium basal. 78. Oe. infrinum
149. Diameter of oogonium 13-20u. 150
149. Diameter of oogonium 20-30u. 151
149. Diameter of oogonium 30-40u. 152
150. Oogonium 13-15 X 18-23u. 198. Oe. inconspicuum*
150. Oogonium 14-15 X 31-35u. 203. Oe. fusus*
150. Oogonium 15-19 X 18-23u. 196. Oe. lapetusporum*
151. Division of oogonium narrow. 101. Oe. gunnii
151. Division of oogonium wide. 224. Oe. poecilosporum*
152. Dioecious. 153
152. Monoecious. 154
153. Diameter of oogonium 29-33u. 79. Oe. howardi
153. Diameter of oogonium 33-40u. 80. Oe. pratense
154. Oogonium subglobose. 82. Oe. acmandrium
154. Oogonium pyriform-globose. 83. Oe. pseaegetmatsporum
155. Dioecious. 89. Oe. mitratum
155. Monoecious. 90. Oe. petri
155. Antheridium not known. 156
156. Oogonium 15-20 X 15-23u. 210. Oe. virceburgense*
156. Oogonium 27-28 X 26-28u. 222. Oe. consocialium*
157. Dioecious. 158
157. Monoecious. 165
157. Both dioecious and monoecious. 91. Oe. triciicum
157. Reproductive structures imperfectly known. 183
158. Diameter of oogonium 13-16u. 91. Oe. triocium
158. Diameter of oogonium 16-43u. 159
158. Diameter of oogonium 43-50u. 92. Oe. welwitschii
158. Diameter of oogonium 52-60u. 93. Oe. tawense
158. Diameter of oogonium about 82u. 94. Oe. dioicum
159. Oosporo globose to subglobose. 160
159. Oosporo ellipsoid, ovoid, or oblong. 162

*See footnote, page 53.
160. Vegetative cell 1–3 diameters long.

161. Female vegetative cell 10–15μ in diameter.

162. Diameter of oogonium 16–20μ. 99a. Oe. pisum var. gracilis

163. Oospore filling oogonium longitudinally

164. Basal cell elongate.

165. Oogonium obvoid-globose to subglobose.

166. Diameter of vegetative cell 8–11μ.

167. Diameter of oogonium 30–33μ. 103. Oe. pyrulum

168. Oospore subglobose, 22–26 × 21–24μ. 104. Oe. loricatum

169. Diameter of vegetative cell 8–16μ.

170. Oospore not filling oogonium

171. Diameter of oogonium 30–38μ. 109d. Oe. crispum var. hawaiense

172. Diameter of oogonium 40–45μ. 109e. Oe. obovatum

173. Vegetative cell 1–3 diameters long.

174. Oogonium obvoid-globose.

175. Diameter of oogonium 38–45μ. 109a. Oe. crispum f. granulosum

176. Diameter of oogonium 44–49μ. 110a. Oe. rupesire f. pseudautumnale

177. Diameter of oogonium 9–14μ. 201. Oe. selandica*

178. Diameter of oogonium 13–19μ.

179. Oospore nearly or quite filling oogonium

180. Oospore not filling oogonium longitudinally

181. Vegetative cell 7–9 × 11–30μ.

182. Diameter of oogonium 20–26μ. 116. Oe. oblongum

183. Diameter of oogonium 9–14μ.

184. Diameter of oogonium 28–33μ.

185. Diameter of oogonium 35–44μ.

186. Diameter of oogonium 40–45μ.

187. Diameter of oogonium 49–50μ.
Oedogonium

184. Oogonium with mammiform projections
184. Oogonium with conically obtuse projections
184. Oogonium with projections intermediate between the two above, 117a. Oe. itzigsohnii f. heteromorphum
185. Diameter of vegetative cell 5–7μ 117b. Oe. itzigsohnii var. minus
185. Diameter of vegetative cell 8–10μ 117b. Oe. itzigsohnii

 Dioecious, Nannandrous, with cylindrical vegetative cells.

186. Oogonium opening by a pore
186. Oogonium opening by a lid
187. Pore median, or a little above median
187. Pore inframedian 123a. Oe. hystricium var. canadense
187. Pore supramedian
187. Pore superior
187. Pore inferior
188. Wall of oospore echinate
188. Wall of oospore punctate 120. Oe. nebraskense
188. Wall of oospore spirally ribbed
188. Wall of oospore smooth
189. Spines more than 5μ in length 124a. Oe. echinospermum var. hornriodii
189. Spines less than 5μ in length
190. Suffultory cell enlarged 122. Oe. hystricium
190. Suffultory cell not or very slightly enlarged
191. Diameter of vegetative cell 7–13μ 121. Oe. aster
191. Diameter of vegetative cell 12–16μ 125. Oe. pungens
191. Diameter of vegetative cell 17–30μ 192
192. Diameter of oogonium 36–38μ 123b. Oe. hystricium var. subglobosum
192. Diameter of oogonium 38–50μ
193. Oospore globose 124. Oe. echinospermum
193. Oospore ellipsoid 123. Oe. hystricium
194. Suffultory cell enlarged
194. Suffultory cell not enlarged
195. Oogonium 40–44μ in diameter 126. Oe. exospirale
195. Oogonium 51–60μ in diameter 127. Oe. illinoisense
196. Diameter of oospore 37–45μ 128a. Oe. spirale var. acutum
196. Diameter of oospore 46–56μ 128. Oe. spirale
197. Oospore globose to subglobose
197. Oospore sexangular-ellipsoid
197. Oospore ovoid 132b. Oe. braunii var. seberi
198. Vegetative cell 8–9μ in diameter 129. Oe. depressum
198. Vegetative cell 9–12μ in diameter 130. Oe. semitortum
198. Vegetative cell 12–23μ in diameter 199
199. Diameter of oogonium 23–30μ 132a. Oe. braunii var. hafnense
199. Diameter of oogonium 30–37μ 132. Oe. braunii
199. Diameter of oogonium 43–49μ 131. Oe. gillicum
199. Diameter of oogonium 49–52μ 133. Oe. flavescens
200. Diameter of oogonium 19–30μ 135a. Oe. sexangulare var. angulosum
200. Diameter of oogonium 29–33μ 135. Oe. sexangulare
200. Diameter of oogonium 36–42μ 135b. Oe. sexangulare var. majus
201. Oospore wall punctate 120. Oe. nebraskense
201. Oospore wall spirally ribbed 128b. Oe. spirale var. latviense
201. Oospore wall smooth 143a. Oe. multisporum var. magnum
201. Oospore wall echinate 134. Oe. manschuricum
202. Oospore wall smooth
202. Oospore wall dentate 136. Oe. stellatum
202. Oospore wall spirally ribbed 128b. Oe. spirale var. latviense
202. Oospore wall echinate 13a. Oe. e. echinospermum
202. Oospore wall longitudinally ribbed
202. Oospore wall pitted

See footnote, page 53.
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>203.</td>
<td>Suffultory cell enlarged.</td>
</tr>
<tr>
<td>204.</td>
<td>Suffultory cell not enlarged.</td>
</tr>
<tr>
<td>204.</td>
<td>Diameter of oogonium 35–50μ.</td>
</tr>
<tr>
<td>204.</td>
<td>Diameter of oogonium 55–60μ.</td>
</tr>
<tr>
<td>204.</td>
<td>Diameter of oogonium 65–80μ.</td>
</tr>
<tr>
<td>205.</td>
<td>Vegetative cell 12–15 × 60–120μ.</td>
</tr>
<tr>
<td>205.</td>
<td>Vegetative cell 15–23 × 45–150μ.</td>
</tr>
<tr>
<td>206.</td>
<td>Suffultory cell 26–40μ in diameter.</td>
</tr>
<tr>
<td>206.</td>
<td>Suffultory cell about 44μ in diameter.</td>
</tr>
<tr>
<td>207.</td>
<td>Diameter of vegetative cell 10–20μ.</td>
</tr>
<tr>
<td>208.</td>
<td>Diameter of vegetative cell 21–40μ.</td>
</tr>
<tr>
<td>208.</td>
<td>Oogonium 24–35μ in diameter.</td>
</tr>
<tr>
<td>208.</td>
<td>Oogonium 35–60 × 60–75μ.</td>
</tr>
<tr>
<td>209.</td>
<td>Oospore globose.</td>
</tr>
<tr>
<td>209.</td>
<td>Oospore depressed-globose.</td>
</tr>
<tr>
<td>210.</td>
<td>Diameter of oogonium 39–60μ.</td>
</tr>
<tr>
<td>210.</td>
<td>Diameter of oogonium 65–80μ.</td>
</tr>
<tr>
<td>211.</td>
<td>Vegetative cell 1–3 diameters long.</td>
</tr>
<tr>
<td>211.</td>
<td>Vegetative cell 3–6 diameters long.</td>
</tr>
<tr>
<td>212.</td>
<td>Oospore not filling oogonium.</td>
</tr>
<tr>
<td>212.</td>
<td>Oospore nearly or quite filling oogonium.</td>
</tr>
<tr>
<td>213.</td>
<td>Oogonium 39–54 × 42–65μ.</td>
</tr>
<tr>
<td>213.</td>
<td>Oogonium 55–60 × 60–75μ.</td>
</tr>
<tr>
<td>214.</td>
<td>Gynandrosporous.</td>
</tr>
<tr>
<td>215.</td>
<td>Spines arranged spirally.</td>
</tr>
<tr>
<td>215.</td>
<td>Spines not arranged spirally.</td>
</tr>
<tr>
<td>216.</td>
<td>Diameter of antheridium 6–9μ.</td>
</tr>
<tr>
<td>216.</td>
<td>Diameter of antheridium 9–10μ.</td>
</tr>
<tr>
<td>216.</td>
<td>Diameter of antheridium 14–15μ.</td>
</tr>
<tr>
<td>217.</td>
<td>Diameter of oogonium 29–33μ.</td>
</tr>
<tr>
<td>217.</td>
<td>Diameter of oogonium 35–36μ.</td>
</tr>
<tr>
<td>217.</td>
<td>Diameter of oogonium 45–57μ.</td>
</tr>
<tr>
<td>218.</td>
<td>Ribs 16–25 in number.</td>
</tr>
<tr>
<td>218.</td>
<td>Ribs 25–40 in number.</td>
</tr>
<tr>
<td>219.</td>
<td>Oogonium 45–50μ in diameter.</td>
</tr>
<tr>
<td>219.</td>
<td>Oogonium 48–65μ in diameter.</td>
</tr>
<tr>
<td>220.</td>
<td>Oospore usually completely filling oogonium.</td>
</tr>
<tr>
<td>220.</td>
<td>Oospore incompletely filling oogonium.</td>
</tr>
<tr>
<td>221.</td>
<td>Dwarf male 47–58μ in length.</td>
</tr>
<tr>
<td>221.</td>
<td>Dwarf male 60–75μ in length.</td>
</tr>
<tr>
<td>222.</td>
<td>Diameter of oogonium 48–57μ.</td>
</tr>
<tr>
<td>222.</td>
<td>Diameter of oogonium 57–66μ.</td>
</tr>
<tr>
<td>223.</td>
<td>Ribs crenulate.</td>
</tr>
<tr>
<td>224.</td>
<td>Ribs crenulate.</td>
</tr>
<tr>
<td>224.</td>
<td>Ribs 25–35 in number.</td>
</tr>
<tr>
<td>224.</td>
<td>Ribs 35–40 in number.</td>
</tr>
<tr>
<td>225.</td>
<td>Pits more or less in longitudinal rows.</td>
</tr>
<tr>
<td>225.</td>
<td>Pits not in longitudinal rows.</td>
</tr>
<tr>
<td>225.</td>
<td>Pits in vertical and transverse rows.</td>
</tr>
<tr>
<td>226.</td>
<td>Oospore ribbed.</td>
</tr>
<tr>
<td>226.</td>
<td>Oospore echinate.</td>
</tr>
<tr>
<td>226.</td>
<td>Oospore echinate.</td>
</tr>
<tr>
<td>226.</td>
<td>Oospore dentate.</td>
</tr>
<tr>
<td>227.</td>
<td>Oogonium 47–60 × 48–63μ.</td>
</tr>
<tr>
<td>227.</td>
<td>Oogonium 39–65 × 40–47μ.</td>
</tr>
<tr>
<td>228.</td>
<td>Division of oogonium median.</td>
</tr>
<tr>
<td>228.</td>
<td>Division of oogonium supramedian.</td>
</tr>
<tr>
<td>228.</td>
<td>Division of oogonium inframedian.</td>
</tr>
<tr>
<td>228.</td>
<td>Division of oogonium superior.</td>
</tr>
<tr>
<td>228.</td>
<td>Division of oogonium supreme.</td>
</tr>
</tbody>
</table>

*Some forms of *Oe. ciliatum* may be sought here.*
Oedogonium

229. Oogonium longitudinally plicate ... 230
229. Oogonium not longitudinally plicate .. 231
230. Diameter of oogonium 16-18μ ... 233a. Oe. crenulatum var. gracilis
230. Diameter of oogonium 25-27μ ... 233. Oe. crenulatum
231. Diameter of oogonium 13-16μ ... 168. O. longicolle
231. Diameter of oogonium 16-20μ ... 168a. O. longicolle var. senegalense
231. Diameter of oogonium 21-26μ ... 169. Oe. rothii
231. Diameter of oogonium 25-31μ ... 232
231. Diameter of oogonium 30-38μ ... 171. Oe. decipiens
231. Diameter of oogonium 39-46μ ... 172. Oe. macrospernum
231. Diameter of oogonium 80-100μ ... 162. Oe. perspicuum
232. Gynandrosporous ... 171c. Oe. decipiens var. bernardense
232. Idioandrosporous ... 171b. Oe. decipiens var. africanum
233. Oogonium with verticillate folds ... 234
233. Oogonium without verticillate folds 235
234. Diameter of oogonium 23-28μ ... 229. Oe. plicatum
234. Diameter of oogonium 50-55μ ... 173. Oe. costatum
235. Vegetative cell 4-7μ in diameter .. 170. Oe. danicum
235. Vegetative cell 13-24μ in diameter .. 175. Oe. mirandrium
236. Oogonium plicate ... 237
236. Oogonium not plicate .. 176. Oe. contortum
237. Suffultory cell enlarged ... 238
237. Suffultory cell not enlarged .. 239
238. Diameter of oogonium 23-26μ ... 232. Oe. pulchrum
238. Diameter of oogonium 28-32μ ... 167b. Oe. platygynum var. continuin
239. Oogonium 16-23μ in diameter ... 230. Oe. lagerstedtii
239. Oogonium 23-29μ in diameter ... 231. Oe. ulceanum
240. Oospore wall smooth .. 241
240. Oospore wall pitted ... 177. Oe. schmidleii
240. Oospore wall echinate .. 212. Oe. velatum
240. Oospore wall scrobiculate ... 258
241. Vegetative cell 3-8μ in diameter ... 242
241. Vegetative cell 8-22μ in diameter .. 243
242. Diameter of oogonium 14-20μ ... 243
242. Diameter of oogonium 19-23μ ... 179b. Oe. rugulosum f. rugulatum
243. Oospore 15-20μ in length ... 179. Oe. rugulosum
244. Oogonium ovoid to ellipsoidal .. 178. Oe. longatum
244. Oogonium obvoid to ovoid-ellipsoidal 179a. Oe. rugulosum f. minutum
245. Oospore globose or subglobeal .. 246
245. Oospore ellipsoid or subellipsoid .. 253
246. Suffultory cell enlarged ... 247
246. Suffultory cell not enlarged .. 248
247. Diameter of vegetative cell 9-15μ ... 180. Oe. kians
247. Diameter of vegetative cell 13-20μ ... 175. Oe. mirandrium
248. Vegetative cell 3/4 to 21/2 diameters long 249
248. Vegetative cell 2 to 3 diameters long 184c. Oe. macrandrium var. hohenackeri
248. Vegetative cell 21/2 to 6 diameters long 250
248. Vegetative cell 6 to 14 diameters long 181. Oe. hoersholmense
249. Diameter of vegetative cell 12-14μ ... 182. Oe. laetevires
249. Diameter of vegetative cell 13-21μ ... 184c. Oe. macrandrium f. lundense
249. Diameter of vegetative cell 21-29μ ... 183. Oe. pluviale
250. Length of oogonium 28-44μ .. 251
250. Length of oogonium 44-55μ .. 252
251. Oogonium usually single or in two’s 184d. Oe. macrandrium var. propinquum
251. Oogonium usually in groups of 2 to 6 184b. Oe. macrandrium f. aemulans
252. Oospore 31-37 X 33-39μ ... 184. Oe. macrandrium
252. Oospore 35-40 X 36-45μ ... 184a. Oe. macrandrium f. acuminatum

*See footnote, page 53.
253. Diameter of vegetative cell 7–12 μ
253. Diameter of vegetative cell 14–32 μ
254. Terminal cell setiform
254. Terminal cell not setiform
255. Diameter of oospore 27–32 μ
255. Diameter of oospore 32–42 μ
255. Diameter of oospore 41–48 μ
254. Terminal cell setiform
256. Vegetative cell 3 to 5 diameters long
256. Vegetative cell 3 to 5 diameters long
257. Diameter of oogonium 27–32 μ
257. Diameter of oogonium 30–39 μ
257. Diameter of oogonium 42–55 μ
258. Diameter of oogonium 40–50 μ
258. Diameter of oogonium 56–68 μ
258. Diameter of oogonium 30–36 μ
258. Diameter of oogonium 42–55 μ
258. Diameter of oogonium 55–58 μ
259. Diameter of oogonium 30–39 μ
259. Diameter of oogonium 40–50 μ
259. Diameter of oogonium 56–68 μ
259. Diameter of oogonium 30–36 μ
260. Diameter of oogonium 42–55 μ
260. Diameter of oogonium 55–58 μ
260. Diameter of oogonium 30–36 μ
181. Oe. hoershohniense
264. Vegetative cell 3 to 5 diameters long
264. Diameter of oogonium 30–36 μ
265. Diameter of oogonium 40–45 μ
265. Length of oogonium 68–75 μ
265. Length of oogonium 68–75 μ
265. Length of oogonium 68–75 μ
266. Plant usually less than 10-celled
266. Plant usually less than 10-celled
266. Plant usually less than 10-celled
266. Plant usually more than 15-celled
267. Diameter of oogonium 35–48 μ
267. Diameter of oogonium 35–48 μ
267. Diameter of oogonium 35–48 μ
268. Oospore wall smooth
268. Oospore wall smooth
268. Oospore wall smooth
269. Oospore wall smooth
41c. Oe. fabulosum var. punctatum
41b. Oe. fabulosum var. columbiae
41a. Oe. fabulosum var. maximum

*See footnote, page 53.
1. **Oe. laeve** Wittrock.
 (Pl. XI, fig. 100.)
 1874, p. 8; De Toni 1889, p. 35; Hirn 1900, p. 75.
 Monoecious; oogonium single,* depressed-globose, pore median; oospore depressed-globose, filling oogonium, spore wall smooth; antheridium in groups of 1–2,* subepigynous, sperm 1; vegetative cell 10–14×20–70μm; oogonium 32–38×24–30μm; oospore 30–35×23–26μm; antheridium 9–10×9–13μm.

 United States: Illinois, Michigan; France.

 Originally distributed from France, the species was found subsequently in Illinois and Michigan (Transeau), and the above description is made from the American material. The large oogonium in relation to the diameter of the vegetative cell and the depressed-globose oospores are chief characteristics. It is clearly separated from *Oe. curvum*, in addition, by the absence of any marked tendency toward irregularly curved filaments.

2. **Oe. curvum** Pringsheim.
 (Pl. XI, figs. 103 and 104.)
 1858, p. 69, Pl. 5, fig. 3; Hirn 1900, p. 74, Pl. I, fig. 3; Tiffany 1926, p. 99, Pl. III, figs. 25–27.
 Monoecious; oogonium 1–6, depressed globose, pore median; oospore depressed-globose, filling or not filling oogonium, spore wall smooth; antheridium 1–7, sperm 1; basal cell elongate; filament usually irregularly curved; vegetative cells 5–10×10–40μm; oogonium 21–25×18–24μm; oospore 19–23×14–19μm; antheridium 6–9×6–9μm.

 United States: Iowa, Alabama; Germany, Spain, Sweden.

 This species is to be compared with *Oe. cryptoporum* below. The irregularly curved filaments, particularly in the region of the antheridia, are usually characteristic. The pore is sometimes a little above the median position.

3. **Oe. cryptoporum** Wittrock.
 (Pl. XI, fig. 101.)
 1870, p. 119; Hirn 1900, p. 72, Pl. I, fig. 1; P. B. A. No. 1525.
 Monoecious; oogonium 1, subdepressed-ovoid-globose or subdepressed-globose, pore median; oospore subdepressed-globose, quite filling oogonium, spore wall smooth; antheridium 1–7, scattered or subhypogynous or subepigynous; sperm 1; vegetative cell 7–10×28–60μm; oogonium 23–28×26–31μm; oospore 22–27×19–21μm; antheridium 6–8×7–11μm.

 United States: Utah; Austria, Denmark, Norway, Sweden.

*Hereafter a numeral (or numerals) only will indicate the number of oogonia and antheridia; thus 1 = a single oogonium or antheridium and 2–7 means that oogonia (or antheridia) may occur in groups of from two to seven seriate individuals. The same applies to androsporangia.
3a. Var. vulgare Wittrock.

(Pl. XI, fig. 102.)
1874, p. 7; Wolle 1887, p. 70, Pl. 74, figs. 1 and 2; Oe. cryptoporum Wittr. in Hirn 1896, p. 2; Hirn 1900, p. 73, Pl. I, fig. 2; (?) Oe. spetsbergense Wittr. 1874, p. 37 and in Hirn 1900, p. 316, Pl. L, fig. 322.

Smaller; oogonium 1–5; vegetative cell 5–8×15–48μ; oogonium 18–25×18–26μ; oospore 16–23×15–19μ; antheridium 5–7×9–12μ.

United States: New Jersey, Michigan, Illinois, Massachusetts, Pennsylvania, Utah; Australia; Ko Chang; Ceylon; Austria, England, France, Germany, Italy, Spain, Norway, Sweden.

The variety is much more widely distributed and has smaller vegetative cells and shorter oogonia than the species. The small sized filaments with rather depressed-globose oogonia are characteristic.

4. Oe. rufescens Wittrock.

(Pl. XI, fig. 105.)
1870, p. 134; 1874, p. 32; Hirn 1900, p. 76, Pl. I, fig. 4; Collins 1909, p. 229; P. B. A. No. 521.

Dioecious, macrandrous; oogonium 1–3, obovoid- or depressed-obovoid-globose, pore median, rimiform; oospore globose or depressed-globose, filling oogonium or nearly so, spore wall smooth; antheridium to 12-seriate; sperm 1; female vegetative cell 8–10×31–70μ, male 7–9×30–54μ; oogonium 22–24×22–30μ; oospore 21–23×17–22μ; antheridium 6–8×8–12μ.

United States: Connecticut, Rhode Island, Michigan, Illinois, Alabama, Ohio; Austria, Denmark, England, Germany, Sweden, Latvia; South Africa.

4a. Var. exiguum (Elfving) Tiffany nov. comb.

(Pl. XI, fig. 106.)
Oe. rufescens f. exiguum (Elfv.) Hirn 1900, p. 76, Pl. I, fig. 5; Oe. exiguum Elfv. in Hirn 1895, p. 19.

Vegetative cells a little smaller; oospore subdepressed-globose; antheridium 3; vegetative cell 5–9×22–88μ; oogonium 22–24×20–28μ; oospore 20–22×17–23μ; antheridium 5×10–12μ.

United States: Illinois, Alabama, Mississippi; Finland, France; Southern Tibet.

4b. Var. lundellii (Wittr.) Tiffany.

(Pl. XI, fig. 107.)
1929, p. 75; Oe. Lundellii Wittr. 1874, p. 32; Oe. Rothii Breb. in Rabenh. Alg. Eur. No. 1374, 1862; Oe. rufescens Wittr. subsp. Lundellii (Wittr.) Hirn 1900, p. 77, Pl. I, fig. 6; Oe. rufescens Wittr. subsp. Lundellii (Wittr.) Hirn f. elongatum Hirn 1900, p. 78, Pl. I, fig. 8; P. B. A. No. 1428.

Vegetative cells wider in proportion to oogonium than in type; oogonium depressed-globose; vegetative cell 8–12×30–75μ; oogonium 22–25×21–27μ; oospore 19–22×15–22μ; antheridium 7–9×6–12μ.
Oedogonium

United States: Maine, California; Austria, England, Finland, France, Germany, Hungary, Sweden.

The species and the varieties resemble Oe. cryptoporum (No. 3) except in their dioecious habit and are separated from each other chiefly on the basis of relative dimensions. The varieties are so widely distributed and so uniformly separable from the species that they must be regarded as distinct even though similar.

5. Oe. calcareum Cleve.
 (Pl. XI, fig. 108.)
 In Wittrock 1870, p. 135; (?) Vesiculifera compressa Hassall 1845, p. 204, Pl. 53, fig. 4; Hirn 1900, p. 78, Pl. 1, fig. 9.

 Dioecious, macrandrous; oogonium 1 or rarely 2, depressed-globose, with median pore; oospore depressed-globose, filling oogonium, wall smooth; antheridium to 8-seriate; sperm 1; vegetative cell 11-14×22-56μ; oogonium 27-30×21-23μ; oospore 26-28×20-21μ; antheridium 10-11×9-12μ.

 England, Denmark, Sweden, Latvia; South Africa.

 The filaments of this species are often incrusted with lime. The depressed-globose oospore completely filling the oogonium and the robust appearance of the short-celled vegetative filaments are characteristic.

6. Oe. sociale Wittrock.
 (Pl. XI, fig. 109.)

 Dioecious, macrandrous; oogonium 1, subglobose, pore median; oospore globose (or subglobose), quite filling oogonium, cell wall smooth; antheridium 1-5, sperms 2, division horizontal; vegetative cell 9-16×30-130μ; oogonium 30-38×33-42μ; oospore (26-)28-35×28-35μ; antheridium 12-14×8-11μ.

 United States: Illinois, Alabama, Mississippi; British Columbia; Austria, Germany, Sweden, Latvia; India, Tibet, Burma.

 The oospore is usually quite globose. It is easily separable from its dioecious relatives by its larger size and by the presence of two sperms in the antheridium.

7. Oe. cymatosporum Wittrock and Nordstedt.
 (Pl. XII, figs. 112 and 113.)
 In Wittr. 1870, p. 121; Oe. Magnusii Wittr. in Hirn 1895, p. 11; Hirn 1900, p. 80, Pl. II, fig. 13.

 Monoecious; oogonium 1 or rarely 2, subdepressed-globose, pore median, rimiform; oospore depressed-globose, filling or not filling oogonium, spore wall of three layers: outer smooth, middle scrobiculate,
inner smooth; antheridium 1–4, subepigynous, subhypogynous, hypogynous, or scattered; sperm 1; vegetative cell 8–10×32–70μ; oogonium 30–40×27–40μ; oospore 27–35×22–33μ; antheridium 7–10×9–13μ.

United States: Massachusetts, Mississippi; Austria, England, Finland, France, Hungary, Sweden.

This species resembles Oe. magnusii below from which it is distinguished by its monoecious habit, its larger oogonia, and its oosposes not usually filling the oogonia.

8. Oe. magnusii Wittrock.

(Pl. XII, fig. 115.)

Dioecious, macrandrous (perhaps monoecious also); oogonium 1–3, depressed-globose, pore median, rimiform; oospore depressed-globose, quite filling oogonium, spore wall of three layers: outer layer smooth, middle layer scrobiculate, inner layer smooth; antheridium to 8-seriate, sperm 1; vegetative cell 7–10×12–40μ; oogonium 24–27×21–26μ; oospore 22–25×18–23μ; antheridium 8–10×5–11μ.

United States: Illinois, Michigan, Massachusetts; British Columbia; Finland, Germany, Sweden.

Easily separable from Oe. cymatosporum (No. 7). According to Wittrock it is sometimes monoecious.

9. Oe. suecicum Wittrock.

(Pl. XII, fig. 116.)

1872, p. 5; 1874, p. 30; West 1891, p. 109, Pl. 18, fig. 2; (?) Oe. trichosporum Itzig. in Rabenh. 1868, p. 426; Him 1900, p. 82, Pl. II, fig. 15; Collins 1909, p. 230; Heering 1914, p. 193, fig. 281; Tiffany 1926, p. 89, Pl. V, figs. 57 and 58.

Dioecious, macrandrous; oogonium 1, subglobose, pore median; oospore globose, nearly filling oogonium, outer spore wall echinate, inner smooth; antheridium 2–6, sperm 1; basal cell elongate; terminal cell apically obtuse; vegetative cell 9–14×30–90μ; oogonium 32–38×34–41μ; oospore 30–37×30–37μ; antheridium 10–12×13–17μ.

United States: Iowa, Illinois, Massachusetts; Australia; Austria, Denmark, Finland, France, Germany, Latvia, Iceland, Norway, Sweden; British Columbia; South Africa.

9a. Form austral e G. S. West.

(Pl. XII, fig. 117.)

1909, p. 45, fig. 6 E.

Vegetative cell somewhat larger; spines larger and more sparse; vegetative cell 14–16×56–80μ; oogonium 40–41×40–41μ; oospore (without spines) 31–33×31–33μ.

Africa: Yan Yean Reservoir, Victoria.

The species and the variety constitute the only dioecious macrandrous members of the genus having echinate oospores.
10. Oe. varians Wittrock and Lundell.

(Pl. XII, fig. 120.)

In Wittr. 1874, p. 11; Oe. polymorphum Wolle 1887, p. 73, Pl. LXXIV, figs. 16-19; Hirn 1900, p. 89, Pl. IV, fig. 23; Collins 1909, p. 232; Heering 1914, p. 206, fig. 298; Tiffany 1926, p. 99, Pl. VII, figs. 75 and 76.

Monoecious, (or sometimes dioecious); oogonium 1, or rarely more, depressed- or subdepressed-pyriiform-globose, pore nearly superior; oospore globose, not filling oogonium, spore wall smooth; antheridium to 9-seriate, scattered; sperms 2, division horizontal; basal cell elongate; terminal cell apically obtuse; vegetative cell 12-16×35-144μ; oogonium 34-50×34-55μ; oospore 31-41×30-41μ; antheridium 11-15×7-μ.

United States: Iowa, New Jersey, Illinois; Patagonia; Austria, Finland, Sweden; South Africa.

The typical plants of this species have a nearly superior pore, and the oospore usually does not fill the irregularly shaped oogonium. Transeau has observed both dioecious and monoecious forms from Illinois. (See also Hirn loc. cit.).

11. Oe. urbicum Wittrock.

(Pl. XII, figs. 118 and 119.)

1874, p. 13; Oe. tumidulum Pringsh. 1855, p. 158, Pl. 1, figs. 26 and 27; Hirn 1900, p. 91, Pl. V, fig. 26.

Monoecious; oogonium 1, ellipsoid-globose, pore a little above median or nearly superior; oospore globose, not filling oogonium, spore wall smooth; antheridium few celled; sperms 2, division horizontal; vegetative cell 15-19×40-110μ; oogonium 46-55×58-63μ; oospore 33-46×33-46μ; antheridium 14-16×7μ.

Germany.

In general appearance this species is similar to Oe. varians above and Oe. tyrolicum (No. 14). It is distinguished from the former by its size and tendency toward ellipsoid oogonia; from both by the variable position of the pore.

12. Oe. obsoletum Wittrock.

(Pl. XII, fig. 121.)

1874, p. 9; Oe. vernale Wittr. 1872, p. 1; Hirn 1900, p. 83, Pl. II, fig. 16.

Monoecious; oogonium 1, subglobose or subdepressed-globose, pore a little above supramedian; oospore subdepressed-globose, not filling oogonium, spore wall smooth; antheridium 1-3, subepigynous; sperm 1; vegetative cell 9-15×30-75μ; oogonium 34-39×34-43μ; oospore 30-34×28-32μ; antheridium 8-9×12-16μ.

Similar to Oe. plusiosporum below and distinguished from it by the usually depressed-globose appearance of the oospore. The oospore of Oe. plusiosporum is more regularly globose and its oogonium is more nearly ellipsoid.
13. Oe. plusiosporum Wittrock.
(Pl. XII, fig. 122.)
1874, p. 11; Wolle 1887, p. 72, Pl. 74, figs. 20 and 21; Hirn 1900, p. 84, Pl. 11, fig. 17.

Monoecious; oogonium 1, subglobose or subellipsoid-globose, with pore a little above median; oospore globose, rarely subglobose, not quite filling oogonium, spore wall smooth; antheridium to 6-seriate; sperm (?) 1; terminal cell obtuse; vegetative cell 12–19×24–77μ; oogonium (28–) 34–45×35–50μ; oospore (25–) 30–39×30–39μ; antheridium 12–14×8–12μ.

United States: Pennsylvania, New Jersey, California; Columbia; British Columbia; Sweden, Finland, Rumania.
See Oe. obsoletum above.

14. Oe. tyrolicum Wittrock.
(Pl. XII, fig. 123.)
1874, p. 12; Hirn 1900, p. 91, Pl. IV, fig. 25; Heering 1914, p. 206, fig. 299; Collins 1918, p. 65; Tiffany 1926, p. 99, Pl. VII, fig. 77.

Monoecious; oogonium 1 (rarely 2), ellipsoid-globose or occasionally obovoid, pore nearly superior; oospore usually globose, not filling oogonium, spore wall smooth; antheridium 1–4; sperms 2, division horizontal; basal cell elongate; terminal cell apically obtuse; vegetative cell 15–24×15–120μ; oogonium 45–53×57–70μ; oospore 40–48×40–48μ; antheridium 12–21×9–11μ.

United States: Massachusetts, Iowa; Austria.
Distinguished by its more nearly ellipsoid oogonia and globose oospores. Separated from Oe. varians (No. 10) by its larger dimensions and from Oe. cardiacum var. carbonicum (No. 15c) by its monoecious habit.

15. Oe. cardiacum (Hassall) Wittrock.
(Pl. XIII, figs. 124 and 125.)
Vesiculifera cardiaca Hass. 1845, p. 203, Pl. 51, fig. 4; Oe. cardiacum Wittr. 1870, p. 135; Oe. lautomninarum Wittr. in Hirn 1886, p. 3; (?) Pringsheimia inaequalis Wood 1872, p. 195, Pl. 18, fig. 1; Hirn 1900, p. 85, Pl. III, fig. 19; Collins 1909, p. 231; Heering 1914, p. 194, fig. 273; Tiffany 1926, p. 89.

 Dioecious, macroandrous; oogonium usually 1, subglobose to sub-cordiform-globose, with a supramedian pore; oospore globose, not filling the oogonium, spore wall smooth; antheridium 1–10; sperms 2, division horizontal; basal cell elongate; terminal cell apically obtuse; female vegetative cell 18–30×60–200μ, male 15–25×45–170μ; oogonium 48–70×58–78μ; oospore 42–60×42–60μ; antheridium 15–21×10–14μ.

United States: Iowa, Illinois, Pennsylvania, Oregon, Ohio, Connecticut; Africa; Paraguay; Ontario; Australia; England, Denmark, Finland, France, Germany, Switzerland, Sweden.
15a. Form **interjectum** Hirn.

(Pl. XIII, fig. 127.)

1900, p. 86, Pl. III, fig. 21.

Pore of oogonium more nearly superior than in the type; vegetative cell 19–29 × 60–190μ; oogonium 45–60 × 63–81μ; oospore 44–58 × 43–58μ.

15b. Form **pulchellum** (Hassall) Hirn.

(Pl. XIII, fig. 126.)

1900, p. 86, Pl. III, fig. 20; V. **pulchella** Hass. 1845, p. 199, Pl. 50, fig. 21.

England, France.

15c. Var. **carbonicum** Wittrock.

(Pl. XIII, fig. 128.)

In Wittr. and Nordst. Exs. 1883; Oe. **carbonicum** Wittr. 1874, p. 33; Hirn 1900, p. 87, Pl. IV, fig. 22; Tiffany 1926, p. 90, Pl. I, fig. 3; P. B. A. No. 1781.

United States: Iowa, Illinois, Ohio; Austria, England, Denmark, Germany, Sweden.

15d. Var. **minus** Lemmermann.

(Pl. XIII, fig. 129.)

1909, p. 191, as v. **minor**; Heering 1914, p. 194; Tiffany 1926, p. 90, Pl. I, fig. 8.

United States: Iowa, Kentucky; Germany.

The “cardiacum” group is rather variable, and the varieties are not always clearly separated. The differentiating characters used in the key are those including shape and size of oospore and relative lengths of vegetative cells. Upon these bases the divisions above seem tenable. See also Oe. **glabrum** (No. 17).

16. **Oe. franklinianum** Wittrock.

(Pl. XIII, fig. 131.)

In Wittr. and Nordst. Alg. Exs. No. 309, 1880; Wolle 1887, p. 89, figs. 7–9; Hirn 1900, p. 88, Pl. II, fig. 18; Collins 1909, p. 231; Heering 1914, p. 194; Tiffany 1926, p. 89, Pl. IV, figs. 43–44.

Dioecious, macrandrous; oogonium 1, subglobose, with a supra-median pore; oospore globose, almost filling oogonium, spore wall
smooth; antheridium 1–4; sperms 2, division horizontal; female vegetative cell 9–12×30–95μ, male 8–10×25–90μ; oogonium 26–31×29–41μ; oospore 24–30×24–30μ; antheridium 8–9×5–7μ.

United States: Iowa, Illinois, New Jersey, Pennsylvania; Brazil; Australia.

This species also resembles *Oe. cardiacum* (No. 15) but is distinguished by its smaller dimensions throughout.

17. *Oe. glabrum* Hallas.
(Pl. XIII, fig. 130.)
1905, p. 408, fig. 18; Hirn 1906, p. 14, Pl. I, fig. 2.

Dioecious, macrandrous; oogonium 1 (rarely 2), obovoid, pore superior; oospore globose or subglobose, not filling oogonium, spore wall smooth; antheridium 5–8; sperms 2, division vertical; terminal cell (sometimes the oogonium) broadly apiculate; female vegetative cell 16–26×120–240μ, male 21–25×60–150μ; oogonium 56–58×63–86μ; oospore 42–49×44–63μ; antheridium 20–22×7–9μ.

Denmark.

This species in general appearance is near the "cardiacum" group. Its vertical division of the two sperms, the small size of its oospore in comparison to the oogonium, and the uniformly superior pore are characters that identify it and make it tenable as a species.

18. *Oe. luteum* Hallas.
(Pl. XIV, figs. 132 and 133.)
1905, p. 408, fig. 18; Hirn 1906, p. 14, Pl. I, fig. 2.

Dioecious, macrandrous; oogonium 1, rarely 2, obovoid-globose, pore a little above median (rarely nearly superior); oospore subglobose, or sometimes subangular, filling oogonium, wall smooth, rarely thickened; antheridium 1–4; female vegetative cell 16–22×40–110μ, male 15–20×45–100μ; oogonium 40–49×45–51μ; oospore 36–46×35–47μ; antheridium 14–17×7–10μ.

British Columbia; Finland, Germany, Sweden, Latvia.

This species is separable from the "cardiacum" group largely by the varying position of the oogonial pore (from nearly median to nearly superior) and by a combination of cell sizes and shapes not found in any one of this group.

19. *Oe. intermedium* Wittrock.
(Pl. XIV, fig. 134.)

In Wittr. and Nordst. Alg. Exs. No. 7, 1877; Hirn 1900, p. 92, Pl. V, fig. 27.

Dioecious, macrandrous; oogonium 1, rarely 2, subobovoid-globose, pore a little above median (rarely nearly superior); oospore subglobose, or sometimes subangular, filling oogonium, wall smooth, rarely thickened; antheridium 1–4; female vegetative cell 16–22×40–110μ, male 15–20×45–100μ; oogonium 40–49×45–51μ; oospore 36–46×35–47μ; antheridium 14–17×7–10μ.

British Columbia; Finland, Germany, Sweden, Latvia.

This species is separable from the "cardiacum" group largely by the varying position of the oogonial pore (from nearly median to nearly superior) and by a combination of cell sizes and shapes not found in any one of this group.

Monococous; oogonium 1, obovoid to obovoid-globose, pore superior; oospore globose or obovoid-globose, filling oogonium or nearly so, spore...
wall smooth and thick; antheridium 1–4, subepigynous or hypogynous or rarely scattered, sperms 2, division horizontal; vegetative cell 15–18×45–80μ; oogonium 31–37×34–45μ; oospore 30–36×33–41μ; antheridium 14–16×5–10μ.

United States: Illinois, Ohio, Mississippi; Austria, Finland, Sweden, Latvia, Germany; India; Siberia.

19a. Var. fennicum Tiffany.
(Pl. XIV, fig. 135.)
1929, p. 74; Oe. intermedium Wittr. forma valida Hirn 1900, p. 95, Pl. V, fig. 32; Oe. intermedium Wittr. forma West 1909a, p. 239.
Oogonium and oospore considerably larger; vegetative cell 17–19×50–120μ; oogonium 38–46×42–60μ; oospore 35–40×35–40μ; antheridium 13–18×6–8μ.

United States: Michigan; Finland; Egypt.
Oe. intermedium resembles Oe. fragile (No. 24) in general appearance, particularly those specimens that reach the upper limits of dimensions. It is rather intermediate between Oe. fragile and Oe. globosum (No. 21). Its size and location of antheridia are distinctive characters in this monoecious group with regularly superior pore. The variety fennicum is larger and its oogonium is not filled by the oospore.

20. Oe. hirnii Gutwinski.
(Pl. XIV, figs. 136 and 137.)
1896, p. 2, Pl. 5, fig. 1; Hirn 1900, p. 93, Pl. V, fig. 29; West and West 1902, p. 12, Pl. I, fig. 1–3.
Monoecious; oogonium 1, subglobose or subovoid, with superior pore; oospore globose, not filling oogonium, spore wall smooth; antheridium 1–2, subepigynous; sperms 2, division horizontal; vegetative cell (sometimes slightly capitellate) 8–13×28–80μ; oogonium 32–37×32–39μ; oospore 28–31×28–31μ; antheridium 8–11×4–9μ.

Austria, Ireland.

20a. Var. africanum G. S. West.
(Pl. XIV, fig. 138.)
1907, p. 98; Tiffany 1926, p. 100, Pl. III, fig. 24.
Oogonium globose to subglobose; antheridium 1–3; vegetative cell, broadly capitellate, 13–15×33–60μ; oogonium 39–40×38–40μ; oospore 33–36×33–36μ; antheridium 13–14×5–6μ.

United States: Iowa; Africa.
The species is near Oe. globosum below in description, differing in its smaller size and its commonly subovoid oogonia. The variety africanum is very distinct and is the only poriferous form in the monoecious group of the genus having broadly capitellate cells.
21. Oe. globosum Nordstedt.

(Pl. XIV, fig. 139.)

1878, p. 20, Pl. 2, fig. 16; Hirn 1900, p. 94, Pl. V, fig. 30.

Monoecious; oogonium 1, globose or subglobose, pore superior; oospore globose, quite filling oogonium, spore wall smooth; antheridium 1-7, subepigynous or subhypogynous or scattered; sperms 2, division horizontal; basal cell elongate; terminal cell setiform; vegetative cell 10-14×40-95μ; oogonium 32-40×32-46μ; oospore 30-37×28-37μ; antheridium 9-12×4-8μ.

United States: Illinois, Massachusetts; Australia; Greece, Serbia.

The relation of this species to Oe. hirnii (No. 20) and to Oe. intermedium (No. 19) is discussed under these latter forms.

22. Oe. zigzag Cleve.

(Pl. XV, figs. 143 and 144.)

In Wittr. 1870, p. 120; Hirn 1900, p. 101, Pl. VII, fig. 42.

Monoecious; oogonium 1, globose or obovoid-globose, pore superior; oospore of same form as oogonium and quite filling it, spore wall smooth, thick; antheridium 1, subepigynous or subhypogynous, alternating with oogonium and vegetative cell; sperms 2, division horizontal; basal cell elongate; terminal cell apically obtuse; vegetative cell 15-20×30-80μ; oogonium 45-63×52-63 (-67)μ; oospore 43-60×(44-) 48-58 (-63)μ; antheridium 15-19×8-15μ.

Sweden.

The short, few-celled filaments of Oe. zigzag are quite unmistakable. It bears some resemblance to the dioecious Oe. alternans (No. 139) and is perhaps closely related to Oe. curtum (No. 23). From the latter it is distinguished by its shorter filaments, by its single oogonium, and by its single antheridium alternating with a vegetative cell.

23. Oe. curtum Wittrock and Lundell.

(Pl. XV, fig. 149.)

In Wittr. 1870, p. 121; Oe. curtum Pringsh. in Roumeguere Alg. Exs. No. 793; Hirn 1900, p. 102, Pl. VI, fig. 41; Skuja 1927, p. 98, Pl. II, fig. 11.

Monoecious; oogonium 1-4, obovoid-globose or subglobose, pore superior; oospore of same form as oogonium, which it nearly fills, spore wall smooth, often thick; suffultory cell occasionally larger than vegetative cell; antheridium 1-4, subepigynous, sometimes terminal; sperms 2, division horizontal; basal cell elongate; vegetative cell 12-22×25-110μ; oogonium 38-55×37-54μ; oospore 36-52×35-51μ; antheridium 10-17×8-13μ.

Finland, Germany, Sweden, Latvia.

Similar to Oe. zigzag (No. 22). Skuja (1927) reports Oe. curtum with 10-12 cells (and often 20) in a filament. Oe.
zigzag rarely has more than 6-8 cells in the filament. Skuja (1927) also records the membrane of the vegetative cell as being spirally punctate.

24. Oe. fragile Wittrock.

(Pl. XV, fig. 145.)

1870, p. 120; 1872a, p. 24; Wolle 1887, p. 71, Pl. 74, figs. 4–6; Oe. Candolleti (Le Cl.) Breb. in Roumeguere Alg. Exs. No. 347; Hirn 1900, p. 96, Pl. V, figs. 33 and 34; Collins 1909, p. 232, fig. 81; Heering 1914, Pl. IV, fig. 36; P. B. A. No. 1477.

Monoecious; oogonium 1, globose or subobovoid-globose, with superior pore; oospore globose, filling oogonium, spore wall smooth; antheridium 1–3; sperms 2, division horizontal; basal cell elongate; vegetative cell 12–17×50–120μ; oogonium 42–50×44–55μ; oospore 39–46×39–46μ; antheridium 12–15×10–12μ.

United States: Iowa, Illinois, Mississippi, Massachusetts, Pennsylvania, Michigan; British Columbia; Patagonia; South Africa; Australia; France, Finland, Sweden, Latvia.

24a. Var. abyssinicum Hirn.

(Pl. XV, fig. 147.)

1900, p. 97, Pl. VI, fig. 35.

Oogonium smaller than the type; antheridium to 6-seriate; vegetative cell 12–17×25–100μ; oogonium 38–45×40–50μ; oospore 36–43×36–44μ; antheridium 11–15×6–14μ.

Africa.

24b. Var. robustum (West and West) Tiffany nov. comb.

(Pl. XV, fig. 146.)

Oe. zigzag Cleve var. robustum West and West 1903, p. 36; ibid. in West 1904, p. 60, fig. 12B; ibid. in Hirn 1906, p. 24, Pl. I, fig. 3.

Oogonium usually globose; antheridium 2; vegetative cell 19–23×40–90μ; oogonium 53–58×50–60μ; oospore 51–56×47–53μ; antheridium 19×5–7μ.

England.

Oe. fragile is characterized by its usually globose spores completely filling the oogonia, its size, and monoecious habit. Cf. Oe. globosum (No. 21) and Oe. intermedium (No. 19). The variety abyssinicum is more slender and has a larger number of seriate antheridia than the species. Variety robustum is considerably larger than either. The latter was originally described by W. and G. S. West as a variety of Oe. zigzag (No. 22). Its pluricellular habit and number of antheridia place it outside the few-celled zigzag. Its globose oospore completely filling the oogonium and its subepigynous and subhypogynous antheridia are characters that seem nearest to Oe. fragile.
25. Oe. vaucheri (Le Cler) Al. Braun; Wittrock.

(Pl. XV, figs. 150 and 151.)

(?) Prolifera vaucheri Le Cl. 1817, p. 474, Pl. 23, fig. 4; (?) Oe. vaucheri Braun 1855, p. 40, Pl. 2, fig. 16; Wittr. 1870, p. 121; (?) Oe. diaandronites Carter 1858, p. 31, Pl. 3, figs. 9-11; (?) Oe. monandronites Carter 1858, p. 35; Hirn 1909, p. 97, Pl. VI, fig. 36; Oe. vaucheri (Le Cl.) Al. Br.; Wittr. f. insulare Hirn 1900, p. 99, Pl. VI, fig. 37; Collins 1909, p. 232; Heering 1914, p. 207, fig. 303; Tiffany 1926, p. 100, Pl. IV, fig. 35; P. B. A. No. 1786.

Monoecious; oogonium 1, obvoid to subovoid-globose, pore superior; oospore globose to subglobose, not filling oogonium, spore wall smooth and sometimes thick; antheridium 1-4; sperms 2, division horizontal; basal cell elongate; vegetative cell 20-30×32-118μ; oogonium 40-58×45-65μ; oospore 35-54×35-55μ; antheridium 17-30×6-15μ.

United States: Massachusetts, Michigan, Iowa, Illinois, Ohio, Mississippi; India; Denmark, France, Germany, Switzerland, Italy, Sweden, Latvia.

Oe. vaucheri resembles Oe. intermedium (No. 19) and Oe. fragile (No. 24). Hirn’s f. insulare is not distinct and is included with the species. The dimensions given above include the variations observed for the American material.

26. Oe. richterianum Lemmermann.

(Pl. XVI, fig. 156.)

1895, p. 26, figs. 1-3; Oe. paludosum (Hass.) Kuetz. in Hirn 1895, p. 14; Hirn 1900, p. 117, Pl. XII, fig. 63.

Monoecious; oogonium 1-2, obvoid or subellipsoid, pore superior; oospore subobovoid or subellipsoid (rarely globose-ellipsoid), filling oogonium or not, spore wall smooth; antheridium 1-6, subhypogynous or subepigynous or scattered; sperms 2, division horizontal; basal cell elongate; vegetative cell 12-21×36-126μ; oogonium 36-48×48-74μ; oospore 35-43×43-59μ; antheridium 12-15×6-10μ.

United States: Massachusetts; British Columbia; Germany, Finland.

Distinguished by its combination of dimensions and by the horizontal division of the antheridium. Cf. Oe. upsaliense (No. 29).

27. Oe. pseudoboscii Hirn.

(Pl. XX, fig. 186.)

1900, p. 291; Pl. XIII, fig. 67; Oe. neglectum Hirn 1895, p. 21, Pl. 1, fig. 1; Silfenius 1903, p. 15, fig.; Iwanoff 1901, p. 48; Hirn 1906, p. 48, Pl. II, fig. 6.

Monoecious; oogonium 1, subobovoid, pore superior; oospore ellipsoid-ovoid or ellipsoid, inflating lower part of oogonium, otherwise not filling it, spore wall smooth; antheridium 1-2, subepigynous; sperms 2, division horizontal; vegetative cell 8-14×64-275μ; oogonium 41-50×75-105μ; oospore 38-45×48-60μ; antheridium 11-12×10-11μ.

United States: Illinois, Alabama, Massachusetts; Finland, Russia.
Iwanoff and Silfvenius (*loc. cit.*) both found material of this species which proved it to be monoecious and not dioecious (Hirn 1900, 1906). It is characterized by the relatively short oospore within a much longer oogonium. The diameter of the oospore is such that the lower part of the oogonium is really inflated. It bears some resemblance to *Oe. paludosum* (No. 53) and *Oe. boscii* (No. 55). From both it is distinguished by its smooth oospores. It is unlike *Oe. boscii* in its monoecious habit.

(Pl. XVI, figs. 153 and 154.)

1890, p. 81; Hirn 1900, p. 118.

Monoecious; oogonium 1, ellipsoid-ovoid, pore superior; oospore ellipsoid, not filling oogonium at upper end, spore wall smooth; antheridium subhypogynous or subepigynous or scattered, 1–9; sperms 2, division vertical; vegetative cell 20–24×44–84μ; oogonium 40–45×70–90μ; oospore 38–42×56–64μ; antheridium 20–22×6–8μ.

United States: Michigan; Ecuador.

This species originally described incompletely from Ecuador by Lagerheim was collected nearly forty years later in Michigan by Miss Alma B. Ackley. The above description is based on the Michigan material. There can be no question of the validity of the species. It resembles in general appearance *Oe. oviforme* (No. 30), *Oe. upsaliense* (No. 29), and *Oe. richterianum* (No. 26). It is readily distinguished from these (Cf. No. 29) in dimensions and habit. The antheridia occur in series and when present at the end of the filament give the plant a curved appearance, not unlike that of the androsporangial filaments of *Oe. spectabile* (No. 186).

29. *Oe. upsaliense* Wittrock.

(Pl. XVI, fig. 157.)

1870, p. 125; 1872a, p. 22; 1874, p. 14, Pl. 1, fig. 4; *Oe. tumidulum* (Roth) in Areschoug Alg. Exs. No. 236, 1864; Hirn 1900, p. 115, Pl. XII, fig. 60; Wittr. and Nordst. Alg. Exsicc. No. 18; P. B. A. No. 1576.

Monoecious; oogonium 1, obvoid or suboblong-ellipsoid, pore superior; oospore same form as oogonium (which it fills), spore wall smooth; antheridium 1–3, subhypogynous; antheridium, oogonium, and vegetative cell alternating; sperms 2, division vertical; vegetative cell varying much in same filament; suffultory cell up to 27μ in diameter; basal cell elongate; terminal cell obtuse; vegetative cell 13–20×55–160μ; oogonium 45–50×66–100μ; oospore 42–47×60–75μ; antheridium 15–18×7–10μ.

United States: Michigan, New Hampshire, Ohio, Illinois; Greenland; France, Germany, Sweden, Latvia.
29a. \textbf{Var. fennicum} Hirn.

\begin{itemize}
 \item \textit{Oedogonium} and \textit{oospore} larger, ellipsoid; vegetative cell \(13-20 \times 55-175\mu\); suffultory cell \(25-33 \times 40-66\mu\); oogonium \(63-68 \times 75-85\mu\); oospore \(61-64 \times 70-78\mu\); antheridium \(15-20 \times 8-13\mu\)

 Finland.

 This smooth-spored species is one of a few in the genus combining the monoecious habit with the tendency toward ellipsoid oogonia. It is distinguished from \textit{Oe. oviforme} (No. 30) by its slightly smaller size, its varying diameter of vegetative cell, and by the rather characteristic alternation of antheridium, oogonium, and vegetative cell in the filament. \textit{Oe. sodiroanum} (No. 28) is smaller and has shorter vegetative cells. \textit{Oe. upsaliense} bears some resemblance to \textit{Oe. richterianum} (No. 26) but in the latter the sperms result from a horizontal division of the antheridium, not a vertical division. The variety \textit{fennicum} has much larger oogonia and antheridia. The smaller suffultory cell is usually characteristic of both the species and the variety.
\end{itemize}

30. \textbf{Oe. oviforme} (Lewin) Hirn.

\begin{itemize}
 \item Monoecious; oogonium 1, obovoid to ellipsoid-obovoid, pore superior; oospore obovoid to ovoid (rarely almost globose), filling or not filling the oogonium, spore wall smooth, thick; antheridium 1–4, epigynous, hypogynous, or scattered; sperms 2, division vertical; basal cell elongated; vegetative cell \(15-28 \times 40-135\mu\); oogonium \(48-55 \times (56–65-80)\mu\); oospore \(46-53 \times 30-63\mu\); antheridium \(16–19 \times 7-12\mu\).

 United States: Iowa; Spain.

 The material distributed from Spain shows a more uniformly obovoid oogonium than is common in the Iowa samples: the latter approach the ellipsoid-obovoid variation. Cf. \textit{Oe. upsaliense} (No. 29).
\end{itemize}

31. \textbf{Oe. geniculatum} Hirn.

\begin{itemize}
 \item Monoecious; oogonium 1, obovoid or obovoid-globose, pore superior; oospore globose or subdepressed-globose, not filling oogonium, spore wall smooth and thick; antheridium 1–5, subepigynous or subhypogynous or scattered, sometimes alternating with vegetative cells; sperms (?) 2, division (?) horizontal; vegetative cell \(37-48 \times 60–135\mu\); oogonium \(56-63 \times 56-68\mu\); oospore \(48-59 \times 48–59\mu\); antheridium \(37–44 \times 5-9\mu\).
\end{itemize}
United States: California.
This species is near *Oe. capilliforme* (No. 37) and *Oe. anomalum* (No. 40). It is larger than either and has somewhat larger oogonia in proportion to the size of the vegetative cells than is the case in *Oe. anomalum*. The peculiar curvature (from which the specific name is derived) of the filaments, due to the opening of the antheridia, is usually characteristic of the species.

32. *Oe. suboctangulare* West and West.
(Pl. XVII, fig. 160.)
1902, p. 129, Pl. 17, figs. 1 and 2; Hirn 1906, p. 23, Pl. 1, fig. 4.

Monoecious; oogonium 1, longitudinally rectangular in optical section, broadly inflated, membrane 3.4-3.8μ thick, yellow, pore superior; oospore subrectangular-ellipsoid, filling oogonium except at the corners; antheridium 2, scattered; vegetative cell 50-54×175-240μ; oogonium 53-67×82-92μ; oospore 50-60×73-85μ; antheridium 41-48×25-27μ.

Ceylon.
The rectangularly appearing oogonium slightly exceeding the vegetative cells in diameter is a distinctive characteristic.

33. *Oe. martinicense* Hirn.
(Pl. XVII, fig. 169.)
1900, p. 134, Pl. XVI, fig. 92; *Oe. crassum* (Hass.) Wittr. in Wolle 1887, p. 74, Pl. 76, figs. 2 and 3; Collins 1909, p. 240.

Monoecious; oogonium 1, obovoid or subobvoid, pore superior; oospore obovoid or obovoid-ellipsoid, quite filling oogonium, spore wall smooth, often thick; antheridium 1-5, hypogynous; sperms 2, division vertical; vegetative cell 33-37×115-240μ; oogonium (63-)68-74×96-125μ; oospore 66-72×81-96μ; antheridium 33-35×5-7μ.

United States: Iowa, Kansas; Island of Martinique.
In appearance this species resembles *Oe. landsboroughi* (No. 48) or *Oe. crassum* (No. 49), both of which, however, are dioecious.

34. *Oe. kurzii* Zeller.
(Pl. XVII, fig. 163.)
1873, p. 189; 1873a, p. 189; Hirn 1900, p. 135, Pl. XVI, fig. 93.

Monoecious; oogonium 1, rarely in series, obovoid or subellipsoid, pore superior; oospore subglobose or ellipsoid, not filling oogonium, spore wall smooth; antheridium hypogynous or scattered, to 15-seriate; sperms 2, division vertical; terminal cell apically obtuse; vegetative cell 44-52×90-250μ; oogonium 70-95×111-130μ; oospore 67-86×80-93μ; antheridium 44-52×6-16μ.

United States: Pennsylvania, Arkansas, Mississippi; India.
This species is quite easily recognized by its monoecious habit, large size, and subglobose to ellipsoid oospores not filling the oogonia.

35. **Oe. capillare** (Linnaeus) Kuetzing.
(Pl. XVIII, figs. 164 and 165.)

Confera capillare L. 1753, p. 1166; *Oe. capillare* Kuetz. 1843, p. 255, Pl. 12, fig. 11, I–10; Kuetz. 1853, p. 13, Pl. 40, fig. 3; *Oe. capillare* Kuetz. var. *flavescens* in Rabenh. Alg. Europe 1861; *Oe. stagnale* Kuetz. *ibid.* 1883; Heering 1900, p. 112, Pl. XI, fig. 58; Heering 1914, p. 197, fig. 278; Tiffany 1926, p. 91, Pl. IV, figs. 39 and 40.

Dioecious, macrandrous; oogonium 1, not or scarcely exceeding the vegetative cell in diameter, cylindrical to subcylindrical, pore superior; oospore globose to cylindric-globose to ovoid, not or completely filling oogonium, spore wall smooth; antheridium 1–4, often alternating with vegetative cell; sperms 2, division horizontal; basal cell elongate, terminal cell broadly apiculate to obtuse; female vegetative cell 35–56×36–120μ, male 35–50×35–90μ; oogonium 40–60×45–75μ; oospore 30–52×35–65μ; antheridium 30–48×5–10μ.

United States: Iowa; Austria, Denmark, Finland, France, Germany, Spain, Italy, Russia, Sweden, Latvia; Africa (Victoria).

35a. **Form stagnale** (Kuetzing; Wittrock) Hirn.
(Pl. XVIII, fig. 166.)

1900, p. 113, PI. X, fig. 57; *Oe. stagnale* Kuetz. 1849, p. 388, and 1853, p. 13, PI. 41, fig. 2; Wittrock 1874, p. 31.

Oospore subcylindrical or cylindrical-globose, sometimes constricted at the middle, not filling oogonium; female vegetative cell 38–50×40–100μ, male 35–45×36–90μ; oogonium 40–60×55–75μ; oospore 36–57×40–60μ; antheridium 33–42×5–9μ.

Germany, Latvia, Spain.

This species and its variety are rather readily distinguished from others by having oogonial which scarcely exceed the vegetative cells in diameter. They are to be compared with *Oe. suboculangulare* (No. 32) and *Oe. geniculatum* (No. 31), both of which are monoecious. The variety *stagnale* is separable from the type on dimensions and shape of oogonium.

36. **Oe. plagiostomum** Wittrock.
(Pl. XIV, fig. 140.)

Oe. sp. Wittr. 1872a, p. 24, Pl. 1, fig. 11; Wittr. 1874, p. 41; Heering 1900, p. 100, Pl. VI, fig. 39; Collins 1918, p. 62; Heering 1914, p. 196, fig. 276; Tiffany 1926, p. 92.

Dioecious, macrandrous; oogonium 1, obovoid-globose, with superior pore; oospore globose to subglobose, usually filling oogonium, spore wall smooth and thickened; antheridium 1–6, often alternating with vegetative cell; basal cell elongate; vegetative cell 22–27×65–120μ; oogonium 42–49×50–60μ; oospore 41–47×42–49μ; antheridium 20–24×8–10μ.
United States: Illinois, Massachusetts, Iowa, Ohio, Mississippi; Denmark, Sweden; India; South Africa.

36a. Var. gracilius Wittrock.

(Pl. XIV, figs. 141 and 142.)

1878, p. 142; Hirn 1900, p. 101, Pl. VI, fig. 40; Collins 1909, p. 233; Tiffany 1926, Pl. IV, figs. 37 and 38.

Smaller than the type, with vegetative cell usually shorter; vegetative cell 20–25×40–100µ; oogonium 36–42×46–57µ; oospore 34–39×36–44/1; antheridium 19–22×7–10µ.

United States: Iowa, New York, Illinois, Ohio, Mississippi; Germany; Mexico; South Africa.

The species and variety are separated mainly on the basis of size. The rather regularly globose oospores, with heavy walls, within obovoid-globose oogonia are characteristic.

37. Oe. capilliforme Kuetzing; Wittrock.

(Pl. XIX, figs. 172 and 173.)

Kuetz. 1853, p. 12, Pl. 37, fig. 3; Wittrock 1872a, p. 21; 1874, p. 31; Oe. dioicum Petrovsky 1861, p. 611, Pl. 13, fig. 6-10; Hirn 1900, p. 107, Pl. VIII, fig. 49; Collins 1909, p. 234; Heering 1914, p. 190, fig. 282; Tiffany 1926, p. 92, Pl. III, figs. 22 and 23.

Dioecious, macrandrous; oogonium 1, obovoid to subovoid, with superior pore; oospore variable, ovoid-globose, cylindric-globose, sub-globose, or globose, not filling oogonium, spore wall smooth; antheridium 2–8, often alternating with the vegetative cell; sperms 2, division horizontal; basal cell elongate, terminal cell apically obtuse or apiculate; female vegetative cell 28–38×42–120µ, male 25–30×40–100µ; oogonium 42–50×51–62µ; oospore 37–45×40–50µ; antheridium 20–25×8–10µ.

United States: Missouri, Iowa, Ohio, Mississippi, Illinois; France, Russia, Sweden; Patagonia; S. Africa.

37a. Form debaryanum (Chmielevsky) Hirn.

(Pl. XIX, fig. 174.)

1900, p. 108, Pl. VIII, fig. 50; Oe. De Baryanum Chmiel. 1889, p. 1, Pl. 1, figs. 1 and 2; Tiffany 1926, p. 92, Pl. III, figs. 20 and 21.

Oospore globose or subglobose; female vegetative cell 25–37×38–130µ, male 22–27×35–100µ; oogonium 46–56×52–66µ; oospore 38–50×40–53µ; antheridium 18–24×5–10µ.

United States: Iowa; Greenland; Russia.

37b. Form lorentzii (Magnus and Wille) Hirn.

(Pl. XIX, fig. 175.)

1900, p. 109, Pl. IX, fig. 51; Oe. lorentzii Magnus and Wille in Wille 1884, p. 51, Pl. 3, figs. 99–101.

Oogonium obovoid to obovoid-globose; oospore usually globose or subglobose, sometimes cylindric-globose; female vegetative cell 26–34×

Uruguay.

37c. Var. austral e Wittrock.
(Pl. XIX, figs. 176 and 177.)

In Wittr. and Nordst. Exs. 1886; Oe. princeps (Hass.) Wittr. in Tilden Amer. Alg. 1894; Hirn 1900, p. 109, Pl. IX, fig. 52; Oe. capilliforme Kuetz.; Wittr. var. austral e Wittr. f. uberosporum Hirn 1900, p. 110, Pl. IX, fig. 53; Tiffany 1926, p. 92.

Oogonium obovoid-globose to subglobose; female vegetative cell 24–36×26–100μ, male 22–33×40–100μ; oogonium 37–53×43–60μ; oospore 35–50×36–55μ; antheridium 21–26×4–9μ.

United States: Minnesota, Iowa, New York, South Dakota, Nebraska, California; Africa; Uruguay, Argentine, Brazil; Mexico; Vancouver.

37d. Var. diversum (Hirn) Tiffany.
(Pl. XIX, fig. 178.)

1929, p. 75; Oe. capilliforme Kuetz.; Wittr. var. austral e Wittr. f. diversum Hirn 1900, p. 110, Pl. IX, fig. 54; Oe. stagnale Kuetz. in Tilden Amer. Alg. 1896.

Dimensions larger throughout; female vegetative cell 34–46×45–130μ, male 33–40×50–120μ; oogonium 40–56×46–70μ; oospore 43–52×40–58μ; antheridium 30–37×6–11μ.

United States: Iowa, Colorado, Montana, Minnesota.

The “capilliforme” group is readily recognized by the smaller male vegetative filaments and shape of oogonia. The group is variable within itself, however, and the above varieties are recognized on the basis of differences in shape of oogonia and in dimensions.

38. Oe. princeps (Hassall) Wittrock.
(Pl. XVIII, figs. 167-169.)

Vesiculifera princeps Hass. 1842, p. 388; V. capillaris Hass. 1845, p. 195, Pl. 50, figs. 1 and 2; Oe. princeps Wittr. 1874, p. 42; Hirn 1900, p. 289, Pl. X, fig. 56.

Dioecious, macrandrous; oogonium 1, little tumid, subglobose, pore superior; oospore globose or subglobose, not filling oogonium, spore wall smooth; terminal cell apiculate; antheridium 1–7; vegetative cell 33–42×40–133μ; oogonium 54–63×67–80μ; oospore 48–58×50–60μ; antheridium 32–38×8–20μ.

United States: Minnesota, Mississippi; England.

I have seen specimens of this alga from both Minnesota and Mississippi with immature antheridia which appear to belong with the oogonial filaments. I have therefore placed the species in the dioecious group. The cells of the antheridial filaments are somewhat longer than those of the male plants. It should be compared with the monoecious Oe. geniculatum (No. 31) and the dioecious Oe. capilliforme (No. 37). It is more robust than the latter.
39. **Oe. biforme** Nordstedt.
(Pl. XVII, figs. 161 and 162.)

In Wittrock and Nordstedt Exs. 1880; Hirn 1900, p. 147, Pl. XXII, fig. 112.

Dioecious, macrandrous; oogonium 1 (rarely 2), pore superior, cylindric-ovoid; oospore oblong-ellipsoid to subglobose or nearly globose, generally not filling oogonium, spore wall smooth; antheridium to 21-seriate; sperms 2, division vertical; female vegetative cell 22–32 × 55–140 μm; male 18–28 × 45–140 μm; oogonium 37–52 × 48–90 μm; oospore 36–48 × 40–70 μm; antheridium 18–28 × 6–15 μm.

Brazil, Paraguay, Ecuador.

Near *Oe. oboviforme* (No. 46) and *Oe. grande* (No. 45); distinguished chiefly by its cylindric-ovoid oogonium.

40. **Oe. anomalum** Hirn.
(Pl. XVIII, figs. 170 and 171.)

1900, p. 112, Pl. X, fig. 55; *Oe. stagnale* Kuetz. var. *variabilis* Lewin 1888, p. 17, Pl. 3, figs. 44–48; Heering 1914, p. 197, fig. 277; Tiffany 1926, p. 91, Pl. 1, figs. 6 and 7.

Dioecious, macrandrous; oogonium 1, subovoid or cylindric-ovoid, pore superior; oospore globose or subglobose, not filling oogonium, spore wall smooth; antheridium 4–13, sperms 2, division vertical; terminal cell apically obtuse; female vegetative cell 40–50 × 80–300 μm, male 33–42 × 80–240 μm; oogonium 54–64 × 68–75 μm; oospore 48–60 × 52–61 μm; antheridium 30–40 × 6–18 μm.

United States: Iowa; Spain.

This species has some of the appearances of *Oe. capillare* (No. 35), particularly in the relatively small difference between the diameter of the vegetative cells and that of the oogonia.

41. **Oe. fabulosum** Hirn.
(Pl. XXV, figs. 215 and 216.)

1900, p. 114, Pl. XI, fig. 59.

Dioecious, macrandrous; oogonium 1, little tumid, cylindrical, pore superior; oospore globose or ellipsoid, not filling oogonium in length, spore wall smooth; antheridium seriate; sperms 2, division vertical; vegetative cell 74–85 × 115–210 μm; oogonium 81–96 × 104–133 μm; oospore 75–89 × 78–104 μm; antheridium 68–80 × 7–22 μm.

Brazil.

41a. **Var. maximum** (West) Hirn.
(Pl. XXV, figs. 217 and 218.)

1906, p. 13, Pl. II, fig. 5; *Oe. maximum* West 1901, p. 75, Pl. IV, figs. 39–41.

Oogonium wall thick; oospore subglobose to subcylindrical, filling oogonium or nearly so; basal cell elongate; terminal cell obtuse or broadly apiculate; vegetative cell 70–93 × 105–335 μm; oogonium 75–107 × 75–136 μm; oospore 70–100 × 65–110 μm; antheridium 65–86 × 7–20 μm.

Siam (Koh-chang).
41b. Var. **columbianum** G. S. West.

(Pl. XXV, fig. 219.)

1914, p. 1048, text fig. 3D.

Vegetative cell more slender; oogonium a little longer and more tumid; oospore more ellipsoid than the type; vegetative cell 56-70 × 248-425μ; oogonium 98-100 × 163-174μ; oospore 81-84 × 124-128μ.

Columbia.

41c. Var. **punctatum** Lemmermann.

1910, p. 313.

Oogonium not tumid; oospore globose, not filling oogonium in length, spore wall yellow-brown, densely punctate; vegetative cell 64-75 × 210-245μ; oogonium 64-75 × 101-113μ; oospore 63-71 × 63-71μ.

Paraguay.

Oe. fabulosum with its three varieties represents the largest size attained by any species of the genus so far recorded. The variety **punctatum** is easily separable by its punctate oospore, although unfortunately Lemmermann left no figure; **columbianum** is the most slender; **maximum** is slightly larger than the species.

42. **Oe. rivulare** (Le Clerc) Al. Braun.

(Pl. XXIV, figs. 209 and 210.)

(?) *Prolifera rivularis* Le Cl. 1817, p. 472, Pl. 23, fig. 1; *Oe. rivulare* Al. Br. 1855, p. 23, Pl. 1, figs. 1-10; Hirn 1900, p. 119, Pl. XII, fig. 66.

Dioecious, macrandrous; oogonium 1-7, obovoid, pore superior; oospore obovoid, ellipsoid, or subglobose, not filling oogonium longitudinally, spore wall smooth; antheridium to 13-seriate; sperms 2, division horizontal; basal cell elongate; female vegetative cell 35-45 × 110-350μ, male 30-36 × 120-280μ; oogonium 70-85 × 130-160μ; oospore 55-70 × 65-100μ; antheridium 21-28 × 14-20μ.

United States: Iowa, Florida, Massachusetts; Denmark, England, Austria, France, Scotland, Germany, Sweden.

Very readily recognized by its large size and particularly by its oospore which is much smaller than the oogonium.

43. **Oe. pachyandrium** Wittrock.

(Pl. XX, figs. 179 and 180.)

In Wittr. and Nordst. Alg. Exs. No. 5, 1877; Hirn 1900, p. 142, Pl. XX, fig. 104.

Dioecious, macrandrous; oogonium 1-3, subobovoid or obovoid-ellipsoid, pore superior; oospore ellipsoid, not filling oogonium (rarely inflating it), spore wall smooth; antheridium 1-4; sperms 2, division vertical; female vegetative cell 30-36 × 80-220μ, male 32-45 × 60-160μ; oogonium 53-57 × 84-108μ; oospore 51-54 × 69-85μ, antheridium 30-43 × 11-20μ.

United States: Pennsylvania, New Jersey, Massachusetts; Sweden.
This plant is very near Oe. grande (No. 45), but is distinguished by having male filaments larger than the female.

44. Oe. mexicanum Wittrock.

(Pl. XXI, figs. 188 and 189.)
1878, p. 138; Hirn 1900, p. 147, Pl. XXII, fig. 111.

Dioecious, macrandrous; oogonium 1, cylindric-obovoid, pore superior; oospore cylindric-obovoid, quite or nearly filling oogonium; spore wall smooth; antheridium to 8-seriate; sperms 2, division vertical; female vegetative cell 34–41×60–140µ, male 30–38×60–114µ; oogonium 53–63×76–110µ; oospore 51–60×63–80µ; antheridium 28–35×7–17µ.

United States: South Dakota, Massachusetts; Mexico.

This species is close to Oe. grande below, being usually distinguished by its larger and considerably shorter vegetative cells and by its more cylindric oogonia.

45. Oe. grande Kuetzing; Wittrock.

(Pl. XXII, figs. 195 and 196.)

Dioecious, macrandrous; oogonium 1–5, subobovoid, pore superior; oospore of the same form as oogonium, which it completely fills or not, spore wall smooth; antheridium 1–10; sperms 2, division vertical; basal cell elongated; female vegetative cell 28–37×70–210µ, male 28–33×70–175µ; oogonium 49–60×86–110µ; oospore 47–58×60–94µ; antheridium 25–33×11–18µ.

United States: Iowa, Maine, Massachusetts, Pennsylvania, California, Michigan, Illinois, Ohio, Minnesota, Mississippi, Connecticut; Ontario; Australia; Austria, Sweden, Switzerland.

45a. Form gemelliparum (Pringsheim) Hirn.

(Pl. XXII, fig. 200.)

1900, p. 145, Pl. XXI, fig. 107; Oe. gemelliparum Pringsh. 1858, p. 71, Pl. 5, fig. 10; Oe. landsboroughi (Hass.) Wittr. var. gemelliparum (Pringsh.) Wittr. 1874, p. 36.

Oogonium ellipsoid-ovoid, antheridium seriate; vegetative cell 20–27×60–200µ; oogonium 55–57×75–80µ; oospore 49–51×65–69µ.

Germany.

45b. Var. aequatoriale Wittrock.

(Pl. XXII, fig. 201.)

Vegetative cell 26–33×70–165µ; oogonium 44–51×75–100µ; oospore 42–49×50–81µ.

Ecuador; Greenland.
45c. Var. angustum Hirn.
(Pl. XXII, figs. 198 and 199.)
1900, p. 146, Pl. XXI, fig. 110; P. B. A. No. 410.
Vegetative cell and oogonium elongated; antheridium to 36-seriate; oogonia sometimes 4; vegetative cell, female 19–30×70–330μ, male 19–25×80–225μ; oogonium 42–52×62–110μ; oospore 40–50×60–89μ; antheridium 18–22×7–15μ.
United States: Massachusetts, Mississippi, Michigan, Illinois; Brazil.

45d. Var. majus Hansgirg.
(Pl. XXII, fig. 197.)
1886, p. 45; Oe. grande forma robusta Hirn 1900, p. 144; Collins 1918, p. 63; Oe. grande Kuetz.; Witt. var. robustum (Hirn) Tiffany 1924, p. 186, Pl. III, fig. 7, and 1926, p. 94, Pl. II, fig. 19.
Larger than the type; female vegetative cell 36–46×80–200μ, male 32–42×80–200μ; oogonium 52–68×75–90μ; oospore 50–64×68–88μ; antheridium 30–36×10–16μ.
United States: Illinois, Iowa, Michigan, Ohio, Massachusetts; Austria, Czecko Slovakia, Latvia.
Oe. grande is one of our commonest species. The sub-obovoid oogonia often in series, with superior pore, the accompanying smaller male filaments with vertical division of the antheridium are distinctive characters. The varieties are distinguished on the basis of size and differences in shape of oogonia.
The common occurrence of the distinct, robust variety of Oe. grande led to the varietal name robustum (Tiffany 1924). Hansgirg's description of the variety majus is so near that given above that the prior name must be used, in spite of its relegation by Hirn (1900) to be synonymous with the robust form of the type. Skuja (1927) records a robust form of Oe. grande with slightly smaller dimensions, which I have included under the variety majus. The dimensions of this variety are from the American material.

46. Oe. oboviforme Wittrock.
(Pl. XX, figs. 184 and 185.)
1878, p. 140; De Toni 1889, p. 74; Hirn 1900, p. 141, Pl. XX, fig. 103; Collins 1909, p. 241.
Dioecious, macrandrous; oogonium 1, obovoid, pore superior; oospore obovoid (rarely ellipsoid-obovoid), about filling oogonium, spore wall smooth; antheridium to 19-seriate, sperms 2, division vertical; basal cell elongate; female vegetative cell 21–33×72–280μ; male 21–31×72–270μ; oogonium 55–65×80–107μ; oospore 54–61×70–85μ; antheridium 21–28×5–13μ.
Brazil; Mexico.
Distinguished from Oe. mexicanum (No. 44) by longer vegetative cells. Its obovoid and slightly larger oogonia usually separate it from Oe. grande, above.

47. Oe. subrectum Hirn.
(Pl. XX, figs. 181-183.)

1900, p. 141, Pl. XX, fig. 102.
Diocious, macrandrous; oogonium 1–2, subellipsoid or obovoid-ellipsoid, pore superior; oospore ellipsoid or globose-ellipsoid, filling or nearly filling oogonium, spore wall smooth, often thick; antheridium to 9-seriate, sperms 2, division vertical; basal cell elongate; terminal cell apically obtuse; vegetative cell, female, 27–35×160–340μ, male 26–33×104–300μ; oogonium 70–83×83–103μ; oospore 65–80×75–93μ; antheridium 22–28×8–14μ.

Brazil.
Characterized among the species with obovoid-ellipsoid oogonia by its size and the relatively long vegetative cells.

48. Oe. landsboroughi (Hassall) Wittrock.
(Pl. XXIV, figs. 211 and 212.)
Vesiculifera landsboroughi Hass. 1842, p. 280, and 1845, p. 197, Pl. 51, fig. 2; Oe. landsboroughi Wittr. 1874, p. 35; Oe. gemelliparum Pringsh. in Rabenh. Alg. Eur. No. 1118, 1861; Oe. gemelliparum var. majus Wittr. 1870, p. 137; Oe. tumidulum Kuetz. in ibid No. 1468, 1863; Hirn 1900, p. 135, Pls. XVI and XVII, figs. 94 and 95; Collins 1909, p. 241; Hearing 1914, p. 285; Tiffany 1926, p. 93, Pl. 11, figs. 12 and 13; P. B. A. No. 663.

Diocious, macrandrous; oogonium 1–2, (rarely 3), obovoid to ovoid, pore superior; oospore ovoid to ellipsoid, filling or not filling the oogonium, spore wall smooth; antheridium up to 30-seriate; sperms two, division vertical; basal cell elongate, terminal cell obtuse; female vegetative cell 31–40×90–240μ, male 30–37×120–225μ; oogonium 63–78×85–115μ; oospore (55–) 59–70×73–102μ; antheridium 27–35×9–20μ.

United States: Iowa, Ohio, Connecticut, Michigan, Massachusetts, New York, Mississippi; British Columbia; Paraguay, Uruguay; Mexico; Austria, England, Finland, France, Germany, Norway, Russia, Sweden.

48a. Var. norvegicum Wittrock.
(Pl. XXV, figs. 213 and 214.)

Vegetative cells shorter but of larger diameter; female vegetative cell 38–45×60–160μ, male 36–45×55–135μ; oogonium 64–73×70–105μ; oospore 60–70×67–90μ; antheridium 35–45×8–15μ.

United States: Iowa; Norway; Brazil; Mexico.
It is rather difficult to indicate the exact differences between the landsboroughi group and the crassum group in the genus,
although one can scarcely confuse the two after some familiarity with them. The shape of the oogonia is quite similar in each, but the oospore is perhaps the most distinctive characteristic. The oospore of *landsboroughi* varies from ovoid to ellipsoid while the oospore of *crassum* varies from ellipsoid to nearly globose. Globose oospores are never present in *Oe. landsboroughi*. The variety *norvegicum* has stouter and shorter vegetative cells. Compare also with *Oe. subrectum* (No. 47) and *Oe. grande* (No. 45).

49. **Oe. crassum** (Hassall) Wittrock.

(Pl. XXIII, figs. 202 and 203.)

(?) *Vesiculifera crassa* Hass. 1842, p. 389; *Oe. crassum* Wittr. 1872a, p. 20, Pl. 1, figs. 4–6; Hirn 1900, p. 139, Pl. XVIII, fig. 99; Heering 1914, p. 200, fig. 286; Tiffany 1926, p. 93, Pl. 11, figs. 17 and 18.

Dioecious, macrandrous, oogonium 1–2, ovoid to obovoid-ellipsoid, pore superior; oospore ellipsoid to globose, filling or not filling oogonium, spore walls smooth; antheridium 2–25; sperms 2, division vertical; female vegetative cell 36–50×72–340μ, male 30–36×72–260μ; oogonium 60–78×85–120μ; oospore 58–76×75–96μ; antheridium 28–32×10–20μ.

United States: Iowa, Florida, Ohio, Michigan, Mississippi, Alabama, Indiana; Austria, England, Germany, Sweden; South Africa.

49a. **Form amplum** (Magnus and Wille) Hirn.

(Pl. XXIII, figs. 204 and 205.)

1900, p. 139, Pls. XVIII and XIX, fig. 100; *Oe. amplum* Magnus and Wille in Wille 1884, p. 40, Pl. 2, figs. 65 and 66; *Oe. crassum* (Hass.) Wittr. in Wille 1884, p. 39, Pl. 2, fig. 64; (?) *Oe. rivulare* (Le Cl.) Al. Br. var. major Wolle 1887, p. 92, Pl. 76, fig. 7 and 8.

Of larger dimensions; vegetative cell, female 46–54×70–160μ, male 42–50×65–200μ; oogonium 75–90×83–115μ; oospore 72–85×77–100μ; antheridium 40–50×8–20μ.

United States: Ohio, Illinois, Mississippi, (?) Florida, Michigan; Uruguay, Brazil.

49b. **Var. longum** Transeau.

(Pl. XXIV, fig. 208.)

1918, p. 237.

Elongated oogonium and oospore; vegetative cell, female 40–52×100–240μ, male 36–44×100–180μ; oogonium 68–84×120–180μ; oospore 66–80×100–125μ; antheridium 34–40×8–14μ.

United States: New York (Short Point Bay, Oneida Lake).

49c. **Var. subtumidum** Hirn.

(Pl. XXIII, figs. 206 and 207.)

1900, p. 140, Pl. XIX, fig. 101.
Longer vegetative cells; oogonium and oospore larger than in type; vegetative cell, female $42-50 \times 120-250\mu$, male $40-48 \times 120-240\mu$; oogonium $75-85 \times 96-137\mu$; oospore $67-79 \times 84-100\mu$; antheridium $34-45 \times 7-15\mu$.

Brazil; South Africa.

For a discussion of the chief characteristics of the *crassum* group, see notes under *Oe. landsboroughi* (No. 48). The variety *amplum* is larger than the species proper and has shorter vegetative cells than the variety *subtumidum*. Fritsch's form of *crassum* from South Africa is nearest the variety *subtumidum*. The variety *longum* is readily characterized by its elongated oogonia and oospores.

50. *Oe. exocostatum* Tiffany.

(Pl. XXVII, figs. 235-237.)

Dioecious, macrandrous, oogonium 1-2, ellipsoid to ellipsoid-globose, occasionally terminal, pore superior; oospore of the same form as the oogonium, which it very nearly completely fills; spore wall of two layers: the outer marked by 13-15 longitudinal ribs, inner smooth; suffultory cell swollen; male filament a little more slender than the female, antheridium 3-7; sperms 2, division horizontal; basal cell elongate; female vegetative cell (13-) $18-25 \times 72-140\mu$, male (13-) $16-20 \times 48-100\mu$; suffultory cell $22-30 \times 60-90\mu$; oogonium $40-52 \times 60-96\mu$; oospore $38-41 \times 56-68\mu$; antheridium $12-16 \times 7-12\mu$.

United States: Iowa, Ohio.

This species is readily distinguished by the presence of longitudinal ribs on the outer layer of the oospore wall. Otherwise it is similar in appearance to *Oe. crenulatocostatum* (No. 57).

51. *Oe. kjellmanii* Wittrock; Hirn.

(Pl. XXVI, fig. 223.)

Dioecious, macrandrous; oogonium 1, obovoid or rarely subellipsoid, pore superior; oospore ellipsoid or subellipsoid, not completely filling oogonium. Spore wall of 3 layers: outer layer internally ribbed, middle layer with 35-45 slightly crenulate longitudinal ribs, anastomosate, inner layer smooth; antheridium to 30-seriate; sperms 2, division vertical; female vegetative cell $15-22 \times 45-120\mu$; male $14-18 \times 56-120\mu$; oogonium $41-50 \times 60-75\mu$; oospore $39-47 \times 48-57\mu$; antheridium $12-15 \times 4-12\mu$.

Borneo.

Characterized by the large number of longitudinal ribs on the middle layer of the oospore.
52. **Oe. paulense** Nordstedt and Hirn.

(Pl. XXVI, fig. 224.)

In Hirn 1900, p. 292, Pl. XIV, fig. 80; Schmidle 1901, p. 344, Pl. XII, fig. 1; Hirn 1906, p. 45, Pl. 11, fig. 5.

Monoecious; oogonium 1, subellipsoid or ellipsoid-ovoid, pore superior; oospore ellipsoid, not or quite filling oogonium, spore wall of three layers: outer layer smooth, middle layer with 18-22 longitudinal ribs, entire and sometimes anastomosate, inner layer smooth; antheridium 1-2, subepigynous; sperms 2, division horizontal; vegetative cell 10-15×50-120μ; oogonium 33-38×43-68μ; oospore 30-36×38-45μ; antheridium 10-14×6-8μ.

Brazil; Australia.

Schmidle's record of this species from South America definitely placed it in the monoecious group. Its small size and fewer ribs on the oospore are characteristic.

53. **Oe. paludosum** (Hassall) Wittrock.

(Pl. XXVI, fig. 231.)

Oe. paludosum Wittr. 1870, p. 124; (?) Vesiculifera paludosa Hass. 1845, p. 199, Pl. 52, fig. 3; Hirn 1900, p. 120, Pl. XIII, fig. 69; Collins 1909, p. 237.

Monoecious; oogonium 1, ellipsoid, pore superior; oospore ellipsoid, filling oogonium, spore wall in three layers: outer and middle layers with 27-35 longitudinal ribs, continuous, rarely anastomosate; antheridium 1-8, scattered, often in the upper part of the filament; sperms 2, division vertical; vegetative cell 15-20×50-140μ; oogonium 39-48×66-84μ; oospore 36-45×54-63μ; antheridium 14–16×6-13μ.

53a. Var. americanum Nordstedt.

(Pl. XXVII, fig. 233.)

In Hirn 1900, p. 121, Pl. XIII, fig. 72; Collins 1909, p. 237.

Oogonium larger; vegetative cell 14-23×45-156μ; oogonium 54-63×75-90μ; oospore 49-57×69-75μ; antheridium 12-18×7-12μ.

United States: South Carolina.

53b. Var. parvisporum Hirn.

(Pl. XXVI, fig. 232.)

1900, p. 120, Pl. XIII, fig. 70; (?) Oe. pringsheimiana Archer 1868, p. 295; (?) Oe. archerianum Cooke 1884, p. 157; Borge 1913, p. 63, fig. 1.

Oogonium subellipsoid or suboblong-ellipsoid; oospore not filling oogonium; antheridium subepigynous or subhypogynous or scattered; vegetative cell 15-20×45-120μ; oogonium 38-44×70-86μ; oospore 35-41×54-60μ; antheridium 15-17×7-12μ.

United States: Illinois, Michigan, Ohio; Spain, Sweden.
Oedogonium

Oe. paludosum is to be compared with Oe. boscii (No. 55) from which it differs in being monoecious. The two varieties are distinguished chiefly by relative sizes and by differently shaped and incompletely filled oogonia.

54. Oe. leiopleurum Nordstedt and Hirn.
(Pl. XXVI, figs. 221 and 222.)

In Hirn 1900, p. 126, Pl. XIV, fig. 79; Oe. kjellmanii Wittr. in Nordst. 1888a, p. 196.

Dioecious, macrandrous; oogonium 1–4, obovoid (or ellipsoid-obovoid) or subellipsoid, pore superior; oospore obovoid-ellipsoid or subellipsoid, usually filling oogonium, spore wall in three layers; outer and middle layers with 28–30 longitudinal ribs, entire, sometimes anastomosate, inner layer smooth; antheridium to 24-seriate, sperms 2, division horizontal; terminal cell apically obtuse; female vegetative cell 15–25×45–170μ, male 15–17×45–85μ; oogonium 40–51×65–83μ; oospore 39–49×50–68μ; antheridium 15–17×7–15μ.

Africa.

To be compared with Oe. boscii below. Its large number of seriate antheridia and usually completely filled oogonia are characteristic.

55. Oe. boscii (Le Clerc) Wittrock.
(Pl. XXVI, figs. 225 and 226.)

1874, p. 34; (?) Prolifera Boscii Le Clerc 1817, p. 474, Pl. 23, fig. 5; Conferva vesicata Ag. in Desmaz. Exs. 1845; Hirn 1900, p. 122, Pl. XIII, fig. 73; Wittr., Nordst. and Lagerh. Alg. Ex. No. 1213.

Dioecious, macrandrous; oogonium 1 (rarely 2), oblong-ellipsoid, pore superior; oospore ellipsoid, not nearly filling oogonium longitudinally, spore wall of three layers; outer and middle layers with 27–35 continuous, rarely anastomosate, longitudinal ribs; antheridium 1–8, scattered, often in upper part of filament; sperms 2, division vertical; vegetative cell, female 14–23×45–135μ, male 13–18×52–108μ; oogonium 39–51×75–110μ; oospore 36–43×56–70μ; antheridium 13–14×6–16μ.

United States: Connecticut, Massachusetts, Iowa, California, Illinois, Ohio, Mississippi; Austria, England, Finland, France, Germany, Switzerland, Norway, Latvia, Sweden; Brazil; Greenland; British Columbia.

55a. Form dispar Hirn.
(Pl. XXVI, fig. 230.)

1900, p. 124, Pl. XIV, fig. 76; P. B. A. No. 1226.

Oospore smaller, ellipsoid-globose or subglobose; vegetative cell 14–21×60–170μ; oogonium 38–45×70–92μ; oospore 34–43×44–55μ.

United States: Massachusetts, Pennsylvania, California.

(Pl. XXVI, fig. 229.)

1898, p. 511, Pl. 5, figs. 21–23; Hirn 1900, p. 125, Pl. XIV, fig. 78.

Oogonium suboblong-obovoid; oospore obovoid or ellipsoid-obovoid; vegetative cell 15–20 \(\times \) 60–150\(\mu \); oogonium 45–50 \(\times \) 90–105\(\mu \); oospore 44–49 \(\times \) 75–85\(\mu \).

Germany.

(Pl. XXVI, figs. 227 and 228.)

1900, p. 125. Pl. XIV, fig. 77, P. B. A. No. 1671.

Smaller; vegetative cell 8–15 \(\times \) 50–165\(\mu \); oogonium 33–38 \(\times \) 75–100\(\mu \); oospore 32–37 \(\times \) 45–50\(\mu \); antheridium 12–13 \(\times \) 10–16\(\mu \).

United States: Maine.

To be compared with *Oe. paludosum* (No. 53) and *Oe. lciopleurum* (No. 54).

56. *Oe. margaritiferum* Nordstedt and Hirn.

(Pl. XXVII, fig. 234.)

In Hirn 1900, p. 128. Pl. XV, fig. 83.

Dioecious, macrandrous; oogonium 1–6, suboblong-ellipsoid or sub-obovoid-ellipsoid or subellipsoid, pore superior; oospore ellipsoid or globose-ellipsoid, usually not filling oogonium longitudinally (rarely quite filling it), spore wall of three layers: outer and middle layer with 30–35 granulate, anastomosate, longitudinal ribs. inner layer smooth; antheridium to 10-seriate; sperms 2, division vertical; female vegetative cell 23–28 \(\times \) 82–190\(\mu \), male 17–23 \(\times \) 70–160\(\mu \); oogonium 50–63 \(\times \) 82–100\(\mu \); oospore 48–61 \(\times \) 55–75\(\mu \); antheridium 18–20 \(\times \) 7–13\(\mu \).

Brazil.

The granulate ribs of the oospore are distinctive. Compare with *Oe. kjellmanii* (No. 51).

57. *Oe. crenulatocostatum* Wittrock.

(Pl. XXVIII, figs. 240 and 241.)

1878, p. 139; (?) *Oe. apiculatum* Wolle 1877, p. 188; Hirn 1900, p. 129, Pl. XV, fig. 84; Collins 1909, p. 239; Heering 1914, p. 198, fig. 280; Tiffany 1926, p. 94, Pl. V, figs. 48–50.

Dioecious, macrandrous; oogonium 1–6, obovoid to subellipsoid, often terminal, pore superior; oospore of the same form as the oogonium, which it nearly or quite fills. outer spore wall smooth, median wall with 14–20 longitudinal ribs, crenulate and sometimes anastomosing, inner wall smooth; antheridium 2–6, often alternating with vegetative cell: sperms 2, division horizontal; terminal cell obtuse to broadly apiculate: female vegetative cell 10–18 \(\times \) 25–125\(\mu \), male 9–13 \(\times \) 32–80\(\mu \); oogonium 30–36 \(\times \) 40–65\(\mu \); oospores 28–34 \(\times \) 37–55\(\mu \); antheridium 9–12 \(\times \) 9–14\(\mu \).

57a. Form cylindricum Hirn.

1900, p. 129, Pl. XV, fig. 85; Oe. boscii (Le Cl.) Wittr. in P. B. A. No. 115, 1895.

Oogonium and oospore cylindric-oblong or more rarely ellipsoid or obovoid-ellipsoid; ribs of oospore scarcely crenulate; vegetative cell 11–16×44–150μ; oogonium 30–36×42–81μ; oospore 27–34×40–65μ.

57b. Var. aureum Tilden.

1888, p. 46; Oe. calosporum Hirn 1895, p. 20, Pl. 1, fig. 3; Hirn 1900, Pl. XV, fig. 87.

Oospore obovoid to globose-ellipsoid, not completely filling oogonium, middle spore wall with dentate ribs (sometimes nearly areolate); vegetative cell 10–13×35–110μ; oogonium 30–35×38–50μ; oospore 29–33×35–43μ; antheridium 10×10μ.

United States: Colorado.

57c. Var. longiarticulatum Hansgirg.

1888, p. 46; Oe. calosporum Hirn 1895, p. 20, Pl. 1, fig. 3; Hirn 1900, p. 130, Pl. XV, fig. 86.

Oogonium single; oospore obovoid to nearly ellipsoid, not filling oogonium, ribs of median layer of spore wall distinctly crenate; vegetative cell 12–15×60–90μ; oogonium 27–30×58–60μ; oospore 24–27×44–52μ.

United States: Michigan, Massachusetts; Austria, Finland; Brazil.

There exists considerable variation in the members of the crenulatocostatum group. The crenate or crenulate ribs (sometimes nearly smooth), the usually seriate oogonia, and small size are characteristic. Cf. Oe. exostatum (No. 50). The variety aureum has dentate ribs which sometimes appear nearly areolate. It is felt, after examining hundreds of specimens of this group, that the above form and varieties are usually sufficiently distinct to be recognized. Ecological variants are common and to give varietal distinction to each of these is merely to make a difficult situation worse. Plants of longiarticulatum from Brazil are slightly smaller in all dimensions than those given above (Borge).
58. **Oe. arcyosporum** Nordstedt and Hirn.

In Hirn 1900, p. 104, Pl. VII, fig. 44.

Monoecious; oogonium 1–5, obovoid to ellipsoid-globose, pore superior; oospore ellipsoid-globose to subglobose, not usually filling oogonium, spore wall of three layers: outer smooth, median areolate, inner smooth; antheridium 1–4, subepigynous to subhypogynous; vegetative cell 13–20×50–200μ; oogonium 41–55×43–68μ; oospore 38–50×40–55μ; antheridium 11–15×8–12μ.

Brazil.

The only monoecious form with an areolate oospore wall.

59. **Oe. areolatum** Lagerheim.

Pl. XXVIII, figs. 248–250.

Dioecious, macrandrous; oogonium 1–4, obovoid or obovoid-globose, with superior pore; oospore subellipsoid or ellipsoid-globose, filling or not filling oogonium, middle layer of spore wall areolate; antheridium 3–12, sperms 2; basal cell elongate; terminal cell apically obtuse; female vegetative cell 16–21×65–165μ, male 15–19×60–140μ; oogonium 48–60×60–75μ; oospore 45–57×48–60μ; antheridium 14–17×8–10μ.

United States: Iowa, Ohio; Ecuador, Brazil.

This species is to be compared with *Oe. hoehnei* (No. 202). It is one of the few dioecious macrandrous forms with areolate oospores.

60. **Oe. dictyosporum** Wittrock.

Pl. XXVIII, fig. 246.

1874, p. 13; Hirn 1900, p. 103, Pl. VII, fig. 43; Tiffany 1926, p. 99.

Monoecious; oogonium 1–2, obovoid-globose, with superior pore; oospore globose to ellipsoid-globose, usually not filling oogonium, outer layer of spore wall reticulate, inner smooth; antheridium 1–3, subepigynous; sperms 2; vegetative cell 11–16×25–95μ; oogonium 33–40×38–46μ; oospore 28–38×30–40μ; antheridium 8–13×5–10μ.

United States: Iowa; Brazil; Africa.

60a. *Form westii* Tiffany.

1929, p. 74; *Oe. dictyosporum* Wittr. forma West 1907, p. 98.

Oogonium and oospore ovoid-ellipsoid; a little larger; vegetative cell 14–16×50–80μ; oogonium 42×52μ; oospore 40×50μ; antheridium 13×8–9μ.

Africa.

The only monoecious representatives of the genus with reticulate oospores are *Oe. dictyosporum* and its f. *westii*. The latter is a little larger than the type and is better recognized as a form until we have more data on its distinctive characteristics.
61. Oe. foveolatum Wittrock.
(Pl. XXIX, fig. 252.)
1878, p. 133; Hirn 1900, p. 106, Pl. VII, fig. 46.

Monoecious; oogonium 1–2, obovoid to subellipsoid-globose, with superior pore; oospore globose to subellipsoid-globose, filling or not filling oogonium, outer spore wall scrobiculate; antheridium 1–7; sperms two, division horizontal; basal cell elongate, terminal cell apically obtuse; vegetative cell 14–23×35–115μ; oogonium 37–49×38–57μ; oospore 33–46×34–48μ; antheridium 15–19×8–12μ.

Brazil; St. Thomas Island.

The only monoecious representative of the genus with scrobiculate oospores.

62. Oe. scrobiculatum Wittrock.
(Pl. XXIX, figs. 258 and 259.)
In Wittr. and Nordst. Alg. Exs. No. 1018, 1893; Hirn 1900, p. 133, Pl. XV, fig. 90.

Dioecious, macrandrous; oogonium 1–3, obovoid or subellipsoid, pore superior; oospore of same form as oogonium and nearly filling it, outer spore wall scrobiculate, inner smooth; antheridium 1–?, sperms 2, division horizontal; female vegetative cell 16–24×50–144μ, male 15–19×45–110μ; sulfitory cell 21–30×34–90μ; oogonium 40–18×60–88μ; oospore 39–45×48–57μ; antheridium 13–15×8–12μ.

Ecuador.

Cf. Oe. verrucosum (No. 63) and Oe. tiffanii (No. 64).

63. Oe. verrucosum Hallas.
(Pl. XXXI, figs. 272–274.)
1905, p. 408, fig. 17; Hirn 1906, p. 24, Pl. II, fig. 8.

Dioecious, macrandrous; oogonium 1–2, broadly ellipsoid or obovoid-globose, pore superior; oospore globose or ellipsoid-globose, not filling oogonium, middle layer of spore wall scrobiculate; sulfitory cell tumid; antheridium 4–7; sperms 2, division horizontal; basal cell elongate, terminal cell, frequently an oogonium, obtuse; vegetative cell, female 11–26×45–200μ; oogonium 56–68×56–94μ; oospore 52–64×44–68μ; antheridium 16×16μ; sulfitory cell 19–49×30–145μ; basal cell 30–35×45–160μ.

United States: Michigan; Denmark.

Cf. Oe. scrobiculatum above and Oe. tiffanii below. The antheridial filaments of Oe. verrucosum are very short, usually consisting only of a holdfast cell and a few antheridial cells.

64. Oe. tiffanii Ackley.
(Pl. XXX, figs. 261–263.)
1929, p. 304, Pl. XXXVI, figs. 15 and 16.

Dioecious, macrandrous; oogonium 1–2, subdepressed-globose or broadly pyriform-globose, pore superior; oospore globose, nearly filling
oogonium, median layer of spore wall scrobiculate; suffultory cell enlarged; antheridium 1–7, division horizontal, sperms 2; basal cell ellipsoid-elongate; vegetative cell 21–22×100–240μ; suffultory cell 25–32×100–230μ; oogonium 64–76×65–69μ; oospore 54–65×55–66μ; antheridium 19–21×14–20μ.

United States: Michigan (Muskegon Lake).

Oe. tiffanii is to be compared with *Oe. scrobiculatum* (No. 62) and *Oe. verrucosum* above. These three normally have smaller suffultory cells and are thus separated from Nos. 65-69.

65. *Oe. punctatum* Wittrock.
(Pl. XXIX, figs. 255 and 256.)
1878, p. 142; De Toni 1889, p. 84; Hirn 1900, p. 132, Pl. XV, fig. 89.

Dioecious, macrandrous; oogonium 1–4, obovoid (rarely globose-obovoid), pore superior; oospore obovoid, nearly filling oogonium (rarely subglobose and not filling oogonium), outer spore wall scrobiculate; antheridium 1–5, often alternating with vegetative cell; sperms 2, division horizontal; basal cell elongate terminal cell (often oogonium) apically obtuse; vegetative cell 15–22×42–128μ; oogonium 38–45×52–65μ; oospore 37–43×43–55μ; antheridium 15–17×6–10μ.

Mexico.

Oe. punctatum, Oe. argenteum (No. 66), *Oe. wyliei* (No. 67), and *Oe. americanum* (No. 68) should be compared in identifying forms with scrobiculate oospores and non-tumid suffultory cells. They are easily separable on the basis of size.

66. *Oe. argenteum* Hirn.
(Pl. XXIX, figs. 253 and 254.)
Hirn 1900, p. 289, Pl. VII, fig. 47; Ackley 1929, p. 302.

Dioecious, macrandrous; oogonium 1, obovoid-globose to globose, pore superior (rarely supramedian); oospore ovoid to globose, outer layer of spore wall scrobiculate; antheridia 3–4, sperms 2, division horizontal; basal cell elongate; female vegetative cell (14–) 20–28×80–160μ, male 20–22×70–160μ; oogonium 44–52×48–62μ; oospore 43–48×44–50μ; antheridium 22×8μ.

United States: Michigan; Brazil.

The figure of *Oe. argenteum* in Pl. XXIX is that of Hirn and represents also one of the variations occurring in the Michigan material. The outer oospore wall of the alga seen by Hirn (1900) is undoubtedly scrobiculate. Ornamentations on oospore walls are quite regularly constant for a given species, appearing definitely on one layer or another. The Michigan specimens (Ackley 1929) contained oospores whose middle wall layer was scrobiculate with an apparently smooth and very thin outer layer. It is perhaps best to include, for the present at least,
only those specimens that conform to the above description. If it develops that these forms with a middle scrobiculate wall may also have the outer wall scrobiculate, the description will have to be emended accordingly. The former had best be considered a form:

66a. Form michiganese Tiffany nov. f.

Oe. argenteum Hirn (in part) *in* Ackley 1929, p. 302, Pl. XXXV, fig. 3-6.

Middle wall of oospore scrobiculate; pore of oogonium supramedian; otherwise as in the type.

United States: Michigan.

67. *Oe. wyliei* Tiffany.

(Pl. XXX, figs. 264-267.)

Dioecious, macrandrous; oogonium 1–4, globose to ovoid, pore superior; oospore globose to ovoid, filling or not filling oogonium, outer spore wall irregularly scrobiculate; antheridium 1–4; sperms 2, division horizontal; basal cell elongate; terminal cell, often an oogonium, apically obtuse or broadly apiculate; vegetative cell 16–24X80–170μ; oogonium 52–64X68–112μ; oospore 48–60X52–64μ; antheridium 16–19X8–18μ.

United States: Iowa, Michigan.

See *Oe. punctatum* (No. 65).

68. *Oe. americanum* Transeau.

(Pl. XXXI, figs. 275 and 276.)

1917, p. 231.

Dioecious, macrandrous; oogonium 1, globose to depressed-globose, pore superior; oospore globose, ellipsoid-globose, or depressed-globose, filling oogonium or not, spore wall of three layers: median layer scrobiculate; antheridium 1–5, frequently alternating with vegetative cell; sperms 2, division horizontal; basal cell elongate; terminal cell obtuse; female vegetative cell 28–48X40–100μ, male vegetative cell 24–30X40–100μ; oogonium 40–76X48–70μ; oospore 38–74X46–56μ; antheridium 20–28X4–12μ.

United States: Michigan, Illinois.

See *Oe. punctatum* (No. 65).

69. *Oe. taphrosporum* Nordstedt and Hirn.

(Pl. XXXI, figs. 270 and 271.)

In Hirn 1900, p. 133, Pl. XVI, fig. 91; Collins 1909, p. 239; P. B. A. No. 813.

Dioecious, macrandrous; oogonium 1–6, obovoid or obovoid-ellipsoid, pore superior; oospore globose or ellipsoid globose, not filling oogonium, outer layer of spore wall scrobiculate, inner layer smooth; antheridium 2–7; terminal cell, sometimes an oogonium, obtuse; basal cell elongate;
vegetative cell 25–38×100–375μ; oogonium 70–83×81–113μ; oospore 58–65×62–70μ; antheridium 24–32×8–12μ.

United States: Massachusetts, Michigan, Illinois; Brazil; India; Columbia.

This species is readily recognized by its large size and its scrobiculate oospore, the latter not filling the oogonium. West (1914) recorded the alga from Columbia with vegetative cells 19-22μ in diameter, and with oogonia and oospores slightly smaller than the dimensions given above.

70. **Oe. pseudacrosporum** Wittrock.

(*Pl. XXX, figs. 268 and 269.*)

Monoecious; oogonium 1, ellipsoid, operculate, division supreme, lid very small and often deciduous; oospore ellipsoidal, completely filling oogonium, spore wall coalescing with that of oogonium, longitudinally ribbed, ribs evidently crenulate; antheridium 1–4, hypogynous or subepigynous; sperms 2, division horizontal; basal cell elongate; terminal cell long, setiform; vegetative cell 9–13×32–110μ; oogonium (27–) 32–37×(40–) 45–56μ; antheridium 8–10×6–10μ.

United States: Iowa, Florida; Sweden.

Its monoecious habit, supreme operculum, and ribbed oospore are characteristic. It should be compared with the nannandrous *Oe. acrosporum* (No. 195).

71. **Oe. paucocostatum** Transeau.

(*Pl. XXXII, fig. 277.*)

1914, p. 300, *Pl. XXVIII*, fig. 5; Collins 1918, p. 66; Tiffany 1926, *Pl. V*, figs. 55 and 56.

Dioecious, macrandrous; oogonium 1, ellipsoid, operculate, division superior; oospore ellipsoidal, nearly filling the oogonium, outer wall smooth, median wall longitudinally ribbed, ribs 15–19 in number, inner wall smooth; antheridium 2–8, sperms 2, division horizontal; terminal cell obtuse, basal cell usually elongate; vegetative cell, female (15–) 19–25×70–160μ; oogonium 54–60×70–104μ; oospore 50–56×66–90μ; antheridium 18–23×8–12μ.

United States: Illinois, Iowa, Ohio.

71a. Var. **gracilis** Tiffany.

(*Pl. XXXII, fig. 278.*)

1921, p. 273; 1926, p. 99.

Somewhat smaller than the species, oospore ellipsoidal or occasionally globose-ellipsoidal, completely filling the oogonium or not filling the oogonium; otherwise similar to the type; vegetative cell 15–20×66–120μ; oogonium 48–52×70–88μ; oospore 44–48×60–70μ; antheridium 17–20×8–12μ.

United States: Ohio, Iowa.
Oe. paucocostatum is characterized among the species with ellipsoid oogonia and longitudinally ribbed oospores by the small number of ribs and by its relatively smaller dimensions. Its nearest relative is the larger Oe. australianum (No. 72).

72. Oe. australianum Hirn.
(Pl. XXXII, figs. 283 and 284.)
1900, p. 192, Pl. XXXI, fig. 192.

Dioecious, macrandrous; oogonium 1–2, ellipsoid, operculate, division superior; oospore ellipsoid or globose-ellipsoid, practically filling oogonium, median layer of spore wall longitudinally ribbed, ribs 17–23, sometimes anastomosing; antheridium to 6-seriate; vegetative cell 17–22×70–170μ; oogonium 59–74×74–96μ; oospore 56–70×59–74μ; antheridium 14–16×10–15μ.

Australia.
Cf. Oe. paucocostatum, above.

73. Oe. tumidulum (Kuetzing) Wittrock.
(Pl. XXXII, figs. 281 and 282.)
1874, p. 35; Confera tumidula English Botany No. 1670 in Kuetz. Dec. Alg. No. 60, 1833; Hirn 1900, p. 191, Pl. XXXI, fig. 191.

Dioecious, macrandrous; oogonium 1, subellipsoid, operculate, division superior; oospore ellipsoid or globose-ellipsoid, quite filling oogonium, outer layer of spore wall with 40–50 longitudinal ribs granulate and sometimes anastomose, inner layer smooth; antheridium to 45-seriate; sperms 2, division horizontal; vegetative cell, female 18–25×65–125μ, male 15–20×60–120μ; oogonium 52–63×78–90μ; oospore 49–58×61–75μ; antheridium 15–20×9–15μ.

Germany.

Oe. tumidulum is the only dioecious, macrandrous member of the genus having the combination of subellipsoid oogonia with superior pore and more than 40 longitudinal ribs on the oospore. Cf. the monoecious Oe. insigne (No. 75).

74. Oe. nobile Wittrock.
(Pl. XXXII, fig. 279.)
1874, p. 14; Hirn 1900, p. 189, Pl. XXX, fig. 188.

Monoecious; oogonium 1 (very rarely 2), ellipsoid or subobovoid-ellipsoid, operculate, division superior; oospore ellipsoid-globose or globose, not filling oogonium, spore wall of three layers: outer layer smooth, middle layer with 30–35 continuous longitudinal ribs, rarely anastomose, inner layer smooth; antheridium 1–3, hypogynous; sperms 2, division horizontal; vegetative cell 16–20×80–180μ; oogonium 57–65×67–90μ; oospore 48–55×50–58μ; antheridium 15–19×9–13μ.

Norway.
74a. Var. minus Hirn.
(PI. XXXII, fig. 280.)
1900, p. 190, Pl. XXX, fig. 189; Oe. insignis Hirn var. minus Hirn 1895, p. 15.

United States: Massachusetts; Finland.
Oe. nobile is near the larger Oe. insignis (No. 75) and differs from Oe. tumidulum (No. 73) in being monoecious. The variety minus sometimes has smaller vegetative cells and always a larger oospore than the type.

75. Oe. insignis Hirn.
(PI. XXXIII, fig. 285.)
1895, p. 14, Pl. 1, fig. 2; 1900, p. 191, Pl. XXX and XXXI, fig. 190.
Monoecious; oogonium 1, ellipsoid-obovoid, operculate, division superior; oospore ellipsoid, quite filling oogonium, spore wall of three layers: outer smooth, inner longitudinally ribbed, the ribs quite entire, anastomosate, 40–45 in number, inner smooth; antheridium 1–7, subepigynous, rarely scattered; sperms 2, division horizontal; vegetative cell (18–) 25–38×75–210μ; oogonium 70–78×100–120μ; oospore 65–75 ×88–104μ; antheridium 23–27×15–23μ.

Finland.
Cf. Oe. tumidulum (No. 73) and Oe. nobile (No. 74).

76. Oe. excisum Wittrock and Lundell.
(PI. XXXIV, fig. 317.)
In Wittr. 1872, p. 3, Pl. 1, figs. 1–4; Hirn 1900, p. 153, Pl. XXIV, fig. 126.
Monoecious; oogonium 1, subconically oblong, medianly plicate with about 9 longitudinal undulations, operculate, division median and broad; oospore ellipsoid with a median constriction, not filling oogonium, spore wall smooth; antheridium 1–2, subepigynous or hypogynous, often terminal; sperm (?) 1; basal cell subhemispherical; terminal cell apically obtuse; vegetative cell 3–6×14–44μ; oogonium 13–15×18–26μ; oospore 9–12×15–18μ; antheridium 3–4×6–7μ; basal cell 8–9×4–5μ.

Finland, Sweden, Latvia.
Oe. excisum is one of the very few species of the genus having an oospore with a median constriction. It is near Oe. pusillum (No. 221), from which it differs in having undulate folds in the oogonium.

77. Oe. inversum Wittrock.
(PI. XXXIII, figs. 295–297.)
1876, p. 47, Pl. 13, figs. 22–24; (?) Oe. monticchii Fiorini-Mazzanti 1860, p. 259, Pl. 1, figs. 3, 4, 4a, 4b; Hirn 1900, p. 179, Pl. XXVIII, fig. 171; Oe. inversum Wittr. var. subclausum Wittr. in Wittr. and Nordst. Alg. Exs. No. 26, 1877; Oe. inversum Wittr. f. subclausum (Wittr.) Hirn 1900, p. 180, Pl. XVIII, fig. 172; Heering 1914, p. 203, fig. 290; Tiffany 1926, p. 95, Pl. VI, figs. 59–62.
Oedogonium

 Dioecious, macrandrous; oogonium 1, globose, operculate, division inferior; oospore globose, quite filling the oogonium, spore wall smooth; antheridium 1–8; sperm 1; vegetative cell capitellate; basal cell subhemispherical, not elongate; filament not infrequently incrusted with lime; female vegetative cell 12–14×25–100μ, male 9–11×20–80μ; oogonium (28–) 32–35×30–34μ; oospores (27–) 30–32×27–30μ; antheridium 10–12×9–12μ; basal cell 13–20×7–14μ.

United States: Iowa; Australia; Austria, France, Germany, Sweden, Switzerland; Africa.

Easily distinguished among the macrandrous species by the inferior position of the operculum. It is in some respects similar to Oe. infimum below. The f. subclausum, according to the Iowa material (Tiffany 1926), is merely an ecological variant and is not tenable. The variations of the species proper include the form.

78. Oe. infimum Tiffany.
(Pl. XXXIII, figs. 289–292.)
1924, p. 183, Pl. II, figs. 6–9; 1926, p. 95, Pl. VI, figs. 59–62.

Dioecious, macrandrous; oogonium 1, globose or subglobose (or the basal part extended, appearing subpyriform-globose), operculate, division at the lowest extremity of the oogonium; oospores globose or subglobose, membrane smooth; male plants a little larger than the female; antheridium 1–10; sperms 2; vegetative cells distinctly capitellate; basal cell of filament subhemispherical, not elongated; filaments not infrequently incrusted with lime; female vegetative cells 12–18×60–140μ, male 16–20×60–140μ; oogonium 40–48×41–50μ; oospore 40–44×38–42μ; antheridium 14–20×8–12μ; basal cell 30–42×16–24μ.

United States: Iowa.

Oe. infimum is the only known member of the genus with the operculum located at the lowest extremity of the oogonium. It is further characterized by its evidently capitellate vegetative cells.

79. Oe. howardii West.
(Pl. XXXIII, fig. 293.)
1904a, p. 281, Pl. 464, figs. 1–5; Hirn 1906, p. 16, Pl. III, fig. 9.

Dioecious, macrandrous; oogonium 1–2, globose (or subglobose), operculate, division median, distinct; oospore globose (or subdepressed-globose) filling oogonium; antheridium to 16-seriate, sperm (?) 1; vegetative cell broadly capitellate; basal cell subhemispherical, scarcely elongate; vegetative cell, female 9–12×20–44μ; male 7–9×16–35μ; oogonium 29–33×29–33μ; oospore 25–29×25–29μ; antheridium 7–9×8–14μ; basal cell 14–16×10–11μ.

West Indies: Barbados.
79a. **Var. minus** Tiffany.
(Pl. XXXIII, fig. 294.)
1927, p. 204, Pl. IX, figs. 6 and 7 (as v. minor).

Smaller than the type; vegetative cell 7–9×27–48μ; oogonium 26–29×28–36μ; oospore 24–26×24–26μ; antheridium 7–8×10–12μ; basal cell 12–14×10–12μ.

Oe. howardii has broadly capitellate vegetative cells as in *Oe. infimum* (No. 78) and *Oe. inversum* (No. 77), but differs from both in the median position of its operculum. It is perhaps nearest *Oe. latiusculum* (No. 81), the latter being larger and possessing a very wide division of the oogonium. The variety *minus* is characterized chiefly by its smaller size and subspherical basal cell.

80. **Oe. pratense** Transeau.
(Pl. XXXIV, figs. 298 and 299.)
1914, p. 297, Pl. XXIX, figs. 9–12; Collins 1918, p. 66; Tiffany 1926, p. 96, Pl. I, figs. 10 and 11.

Dioecious, macrandrous; oogonium 1 (rarely 2), subdepressed-globose or broadly pyriform-globose, operculate, division median, narrow but distinct; oospore depressed-globose or subglobose, filling or nearly filling oogonium, spore wall smooth; antheridium 1–2, usually alternating with vegetative cell; sperm 1; basal cell elongate; vegetative cell, female 10–17×35–95μ, male 8–15×32–82μ; oogonium 33–40×35–50μ; oospore 32–38×28–35μ; antheridium 10–14×13–18μ.

Oe. pratense is distinguished from *Oe. latiusculum* below by the narrow opening of the operculum and by its cylindrical vegetative cells. The latter character together with its larger size separates it from *Oe. howardii* (No. 79). The basal cell of *Oe. pratense* is uniformly elongate. Among the monoecious forms it bears some resemblance to *Oe. acmandrium* (No. 82) and *Oe. pseaegmatosporum* (No. 83).

81. **Oe. latiusculum** Tiffany.
(Pl. XXXIII, figs. 287 and 288.)
1924, p. 182, Pl. III, figs. 4–6; 1926, p. 96, Pl. VI, figs. 72–74.

Dioecious, macrandrous; oogonium 1–2, globose to ellipsoid-globose; oogonium operculate, division median, very wide; oospore of the same form as the oogonium which it very nearly or completely fills, wall smooth; male plant somewhat larger than the female; antheridium 1, usually alternating with a single vegetative cell, sperm 1; vegetative cell distinctly capitellate; basal cell of filament subhemispherical, not elongated; filament not infrequently incrusted with lime; female veg-

United States: Iowa, Mississippi, Alabama, Kentucky.

The wide operculum, the capitellate vegetative cells, the single antheridium alternating with a vegetative cell, and the subhemispherical basal cell are characteristic of the species.

82. Oe. acmandrium Elfving.

(Pl. XXXIV, fig. 300.)

In Hirn 1895, p. 13; Hirn 1900, p. 150, Pl. XXIII, fig. 120.

Monoeccious; oogonium 1–2, depressed-globose or subglobose, operculate, division median and narrow; oospore depressed-globose or subglobose, filling oogonium, wall smooth; antheridium 1–3, sub-epigynous, epigynous, or hypogynous, often terminal; sperm single; basal cell elongate; vegetative cell 7–10×30–80 μ; oogonium 30–35×28–38 μ; oospore 28–33×25–29 μ; antheridium 8–10×10–15 μ.

United States: Illinois; Finland, Sweden; India.

Cf. Oe. pratense (No. 80) and Oe. psaegmatosporum below.

83. Oe. psaegmatosporum Nordstedt.

(Pl. XXXIV, fig. 301.)

1877, p. 24, Pl. 3, fig. 1–3; Hirn 1900, p. 150, Pl. XXIII, fig. 121.

Monoeccious; oogonium 1–5, broadly pyriform-globose, operculate, division median, narrow but distinct; oospore depressed-globose to globose, inflating the middle part of oogonium, spore wall (?) smooth; antheridium to 15-seriate, hypogynous, cell a little tumid; sperm single; vegetative cell 9–10×56–80 μ; oogonium 28–33×33–40 μ; oospore 27–31×24–27 μ; antheridium 9–12×6–10 μ.

Denmark, Sweden.

Near Oe. acmandrium above, differing in its pyriform-globose and medianly inflated oogonia and many-seriate antheridia.

84. Oe. minus Wittrock.

(Pl. XXXIV, fig. 302.)

1874, p. 9; Oe. punctato-striatum var. minor Wittr. 1870, p. 123; Oe. spirogranulatum Schmidle 1894, p. 43, Pl. 7, fig. 1; Hirn 1900, p. 151, Pl. XXIII, fig. 122.

Monoeccious; oogonium 1, pyriform-globose or depressed-globose, operculate, division median, wide; oospore depressed-globose, not filling oogonium, spore wall smooth; antheridium to 10-seriate, subepigynous or subhypogynous or rarely scattered, cells a little tumid; sperm 1; vegetative cell somewhat capitellate; wall of vegetative cell and of oogonium spirally punctate; basal cell depressed-globose or subhemispherical, wall vertically plicate; vegetative cell 9–13×30–78 μ; oogonium 34–49×28–42 μ; oospore 30–42×26–36 μ; antheridium 9–13×3–5 μ.
United States: Massachusetts, Michigan; Finland, Germany, Spain, Norway, Sweden, Latvia, Russia.

Oe. minus is one of the few species of the genus with spirally punctate vegetative cell and oogonial walls. It is easily separable from the nannandrous *elegans* (No. 155) and the macrandrous *punctatostriatum* (No. 85) not only by its monoecious habit but also by its size.

85. **Oe. punctatostriatum** De Bary.
(Pl. XXXIV, figs. 303 and 304.)

1854, p. 47, Pl. 2, figs. 15 and 16; Hirn 1900, p. 152, Pl. XXIII, fig. 123.

Dioecious, macrandrous; oogonium 1, depressed-globose, operculate, division median, rather wide and distinct; oospore depressed globose, not filling oogonium, spore wall smooth; antheridium to 10-seriate; sperm 1; wall of vegetative cell and oogonium spirally punctate; basal cell depressed-globose or subhemispherical, wall vertically plicate; female vegetative cell 18–22×38–128μ, male 16–19×33–108μ; oogonium 48–55×38–48μ; oospore 40–51×35–42μ; antheridium 16–19×6–12μ; basal cell 28–31×21–25μ.

United States: Iowa, Illinois, Florida, Michigan; England, Finland, France, Ireland, Germany, Norway, Russia, Latvia, Sweden; Brazil; Greenland; Australia; British Columbia.

Cf. *Oe. minus* above.

86. **Oe. capitellatum** Wittrock.
(Pl. XXXIV, fig. 315.)

1874, p. 7; *Oe. piliferum* Wittr. 1870, p. 122, and 1872, p. 23; Hirn 1900, p. 149, Pl. XXIII, fig. 18.

Monoecious; oogonium 1, subdepressed or depressed globose, operculate, division median, narrow but distinct; oospore depressed globose, completing (or nearly so) oogonium, spore wall smooth; antheridium 1–2, subepigynous or hypogynous or rarely scattered; sperm (?) 1; vegetative cell capitellate; basal cell subhemispherical; terminal cell piliform; vegetative cell 6–9×20–60μ; oogonium 20–25×17–23μ; oospore 18–23×15–19μ; antheridium 6–7×8–9μ; basal cell 16–18×6–8μ.

United States: Ohio, Illinois, Mississippi, Alabama; British Columbia; Denmark, Finland, Sweden; Turkestan; Caucasus; Burma.

Among the species with capitellate vegetative cells it is characterized by its monoecious habit and small size. It differs from *Oe. quadratum* below in the absence of angular-globose oogonia.
87. **Oe. quadratum** Hallas.

(Pl. XXXIV, figs. 306-308.)

1905, p. 405, fig. 12; Hirn 1906, p. 19, Pl. III, fig. 10.

Monoecious; oogonium 1–4, angular-globose, opeculate, division median; oospore angular-globose, filling oogonium, spore wall smooth; antheridium 1, alternating with vegetative cell; vegetative cell capitellate; basal cell subhemispherical; vegetative cell 5–12×25–140μ; oogonium 22–28×28–33μ; oospore 20–26×26μ; antheridium 10–12×12–14μ; basal cell 7–12×6–9μ.

Denmark.

Cf. **Oe. capitellatum** above.

88. **Oe. bohemicum** Hirn.

(Pl. XXXVI, fig. 344.)

1900, p. 169, PL XXVII, fig. 154; Heering 1914, p. 216, fig. 327; Tiffany 1926, p. 101, PL III, fig. 30.

Monoecious; oogonium 1, globose, opeculate, division superior; oospore globose, filling oogonium, spore walls smooth; antheridium 1–4, subepigynous; sperms 2, division horizontal; vegetative cell capitellate, 10–16×21–60μ; oogonium 42–45×46–49μ; oospore 40–43×40–43μ; antheridium 9–10×5–7μ.

United States: Iowa; Austria.

This is the largest of the monoecious species combining the median location of the operculum and the capitellate vegetative cell. The dimensions above, from the Iowan material, also include those of the Austrian specimens.

89. **Oe. mitratum** Hirn.

(Pl. XXXVI, figs. 334 and 335.)

1895, p. 22, Pl. 1, fig. 7; 1900, p. 302, Pl. XXIV, fig. 132.

Dioecious, macrandrous; oogonium 1–4, globose or subglobose, opeculate, division supramedian or superior, narrow but distinct; oospore globose (rarely subglobose), filling oogonium, spore wall smooth; antheridium 1–5, subepigynous, sperms 2, division horizontal; vegetative cell often broadly capitellate; vegetative cell 5–10×18–80μ; oogonium 18–24×20–28μ; oospore 17–23×17–22μ; antheridium 6–9×6–8μ.

United States: Illinois; Austria, Finland, Sweden.

Hirn (1900) records this species as doubtfully monoecious, but material from Illinois (Transeau) shows it to be definitely dioecious, macrandrous. The emended description was supplied from the Illinois material. Cf. **Oe. petri** below.

90. **Oe. petri** Wittrock.

(Pl. XXXVI, fig. 332.)

1874, p. 6; Hirn 1900, p. 154, Pl. XXIV, fig. 127.

Monoecious; oogonium 1 (rarely 2), pyriform or pyriform-globose, opeculate, division a little above median; oospore subdepressed or
depressed-globose, filling oogonium, spore wall smooth; antheridium 1–2, hypogynous or epigynous or subepigynous; sperm 1; basal cell elongate; terminal cell apically obtuse; vegetative cell 6–7×32–48μ; oogonium 21–24×22–29μ; oosporė 20–23×16–19μ; antheridium 5–7×9–11μ.

Germany, Spain, Sweden; Ceylon.

91. Oe. trioicum Woronichin.

1923, p. 99.

Dioecious macrandrous, or monoecious; oogonium 1–3, sometimes terminal, ellipsoid, operculate, division superior; oospore ellipsoid or subovoid, spore wall smooth, faintly violet; antheridium 1–6, hypogynous in monoecious filament, scattered or terminal in male filament; terminal cell obtusely rounded; basal cell attenuate; male plants 130–330μ long; vegetative cell 4–5×12–22μ; oogonium 25–27×13–16μ; oospore 20–21×14μ; antheridium 4×3μ.

Near Baku, in Azerbaijan (west coast of the Caspian).

This plant according to Woronichin is both dioecious, macrandrous and monoecious, in this respect similar to Oe. varians (No. 10). It should be compared with the macrandrous pringsheimii (No. 95) and the monoecious gracillimum (No. 114). Unfortunately no figure is available.

92. Oe. welwitschii West and West.

(PI. XXXVII, figs. 351 and 352.)

1897, p. 5; Hirn 1900, p. 174, Pl. XXVIII, fig. 162; Tiffany 1926, p. 97, Pl. IV, figs. 41 and 42.

Dioecious, macrandrous; oogonium 1–3, subovoid-globose, operculate, division superior; oospore globose, filling or not filling oogonium, spore wall smooth; antheridium 2; female vegetative cell 20–28×25–84μ, male 17–20×35–80μ; oogonium 43–50×43–52μ; oospore 35–43×35–42μ; antheridium 16–18×7–9μ.

United States: Iowa, Illinois, Alabama; Africa.

This species is near Oe. iowense below, but differs in having at once both larger vegetative cells and smaller oogonia. It may be near the imperfectly known dioicum (No. 94) and is larger than Oe. pringsheimii (No. 95).

93. Oe. iowense Tiffany.

(Pl. XXXVII, figs. 353–355.)

1924, p. 181, Pl. III, figs. 1–3; 1926, p. 97, Pl. VI, figs. 60–71.

Dioecious, macrandrous; oogonium 1–2, globose, or ellipsoid-globose, operculate, division superior; oospore of the same form as the oogonium, which it completely fills or not, spore wall smooth; antheridium 1–25, sperms 2, division horizontal; basal cell of filament commonly elongated; vegetative cell 10–16×44–100μ; oogonium 52–60×60–80μ; oospore 45–56×50–64μ; antheridium 10–12×10–20μ; basal cell 16–24×60–80μ.
United States: Iowa, Ohio, Kentucky.

This species is easily recognized by the considerable difference between the diameter of the vegetative cells and that of the relatively much larger oogonia. Its oogonia are larger than those of *Oe. welwitschii* above.

94. *Oe. dioicum* Carter.

(Pl. XXXVII, figs. 356 and 357.)

1858, p. 30, Pl. 3, figs. 1-2, 5-8, 13-16; Hirn 1900, p. 175, Pl. XXVIII, fig. 163.

Dioecious, macrandrous; oogonium 1, obovoid-globose, operculate, division superior; oospore globose, not filling oogonium, spore wall smooth; male plants a little smaller than female; antheridium 10–20, sperms (?) 2, division vertical; female vegetative cell about $32 \times 80–110 \mu$; oogonium about $82 \times 92 \mu$.

India.

No data beyond those of Carter are available, and *Oe. dioicum* is retained here largely because it cannot be definitely discarded upon our present knowledge of the species.

95. *Oe. pringsheimii* Cramer; Wittrock.

(Pl. XXXV, figs. 325 and 326.)

Cramer 1859, p. 17, Pl. 1, fig. C 1-4; Wittr. 1870, p. 135; Wittr. 1874, p. 33, Pl. 1, figs. 16 and 17; Hirn 1900, p. 170, Pl. XXVII, fig. 155; *Oe. pachydermatosporum* Nordst. 1878, p. 21, Pl. 2, fig. 13-15; *Oe. pringsheimii* Cram.; Wittr. var. *Nordstedtii* Wittr. *f. pachydermatosporum* (Nordst.) Hirn 1900, p. 173, Pl. XXVII, fig. 160; Collins 1909, p. 246; Heering 1914, p. 202, fig. 284; Tiffany 1926, p. 98, Pl. V, figs. 45 and 46.

Dioecious, macrandrous; oogonium 1–6, subovoid-globose, operculate, division superior; oospore globose, nearly filling oogonium, spore wall smooth; antheridium to 10–seriate, often alternating with vegetative cell; sperms 2, division horizontal; basal cell elongate, terminal cell broadly apiculate or obtuse; female vegetative cell $14–20 \times 28–100 \mu$; male $12–16 \times 24–64 \mu$; oogonium $35–43 \times 36–46 \mu$; oospore $30–37 \times 30–37 \mu$; antheridium $10–15 \times 6–9 \mu$.

United States: Iowa, New York, Pennsylvania, Florida, Ohio, Utah; Africa, Afghanistan; Australia; Austria, Denmark, England, Finland, Italy, Norway, Latvia, Sweden, Switzerland.

(Pl. XXXV, fig. 331.)

1900, p. 173, Pl. XXVII, fig. 161.

Smaller; vegetative cell broader; oogonium 1, obovoid-globose, nearly filled by oospore; vegetative cell $10–13 \times 15–39 \mu$; oogonium $28–32 \times 30–35 \mu$; oospore $27–30 \times 27–30 \mu$.

Brazil.
95b. Var. nordstedtii Wittrock.

(Pl. XXXV, figs. 327-330.)

In Wittr. and Nordst. Alg. Exs. No. 8, 1877; Oe. eiliare De Notaris 1868, p. 120; Oe. franklinianum Wittr. in Tilden Amer. Alg. No. 2, 1894; Oe. nordstedtii Wittr. 1872, p. 6, Pl. 1, figs. 7 and 8; Oe. pringsheimii var. varians Nordst. 1888, p. 11, Pl. 1, fig. 9; Oe. pachydermatosporum Nordst. in Lewin 1888, p. 18, Pl. 3, fig. 56; Hirn 1900, p. 171, Pl. XXVII, figs. 150-158; Oe. pringsheimii Cram.; Wittr. var. nordstedtii Wittr. f. euganeorum (Wittr.) Hirn 1900, p. 172, Pl. XXVII, fig. 159; Oe. euganeorum Wittr. 1874, p. 39; Tiffany 1926, p. 98, Pl. V, fig. 47.

Smaller than the type, oogonium 1-2; oospore not filling oogonium; female vegetative cell 10-16×20-76μ, male 9-15×18-68μ; oogonium 28-39×36-45μ; oospore 26-34×27-34μ; antheridium 9-12×8-9μ.

United States: Minnesota, California, Iowa, Illinois, Ohio, Michigan; Austria, England, Finland, Latvia, Germany, Italy, Switzerland, Spain; India; Patagonia; Greenland; Samoa.

Oe. pringsheimii is characterized by its subovoid-globose oogonia and superior position of the operculum, among the dioecious species. Its oogonia are smaller than either Oe. iowense (No. 93) or Oe. welwitschii (No. 92). The variety abbreviatum has shorter vegetative cells and var. nordstedtii is more slender than the type.

96. Oe. nodulosum Wittrock.

(Pl. XXXIX, figs. 374 and 375.)

1872a, p. 22, Pl. 1, figs. 8-10; 1874, p. 13, Pl. 1, figs. 2 and 3; Borge 1899, p. 6, Pl. 1, fig. 3; Hirn 1900, p. 187, Pl. XXIX, fig. 184.

Monoecious; oogonium 1-2, obovoid-globose or more rarely obovoid-ellipsoid, operculate, division superior; oospore globose or subglobose or more rarely globose-ellipsoid, nearly filling oogonium, spore wall smooth, often thick; antheridium 1-3, subepigynous or hypogynous; sperms 2, division horizontal; basal cell elongate, not constricted; terminal cell obtuse or apiculate; vegetative cell, with two undulate constrictions, 20-29×30-140μ; oogonium 48-57×56-73μ; oospore 46-53×49-56μ; antheridium 18-25×7-9μ.

Australia; China; Patagonia; England, Sweden.

96a. Var. commune Hirn.

(Pl. XXXIX, fig. 376.)

1900, p. 187, Pl. XXX, fig. 185; Oe. nodulosum Wittr. in P. B. A. No. 74. 1895, and in Hirn 1895, p. 13; Collins 1909, p. 248.

Oogonium subobovoid-ellipsoid to ellipsoid or more rarely globose-ellipsoid; vegetative cell 22-29×35-140μ; oogonium 64-74×70-90μ; oospore 56-70×67-80μ; antheridium 18-26×7-10μ.

United States: Massachusetts; Finland, Sweden.

The nodulose character of the vegetative cells is very distinctive. Oe. sphaerandrium (No. 105) sometimes has nodulose cells, but it is much smaller. Var. commune has larger
Oedogonium

Oogonia and oospores. *Oe. undulatum* (No. 119), a nannandrous species, has vegetative cells four times undulate-constricted while *Oe. nodulosum* has two undulate constrictions.

97. **Oe. porrectum** Nordstedt and Hirn.

(Pl. XXXVIII, figs. 361 and 362.)

In Hirn 1900, p. 186, Pl. XXIX, fig. 183.

Dioecious, macrandrous; oogonium 1, oblong, operculate, division superior; oospore ellipsoid or globose-ellipsoid, not filling oogonium longitudinally, spore wall smooth; antheridium to 4-seriate; sperms 2, division horizontal; female vegetative cell 7–10×25–55μ, male 6–9×25–62μ; oogonium 24–27×44–53μ; oospore 23–24×25–28μ; antheridium 6–7×6–8μ.

Brazil.

98. **Oe. nanum** Wittrock; Tiffany.

(Pl. XXXVI, figs. 342 and 343.)

Wittrock 1874, p. 37; Hirn 1900, p. 305, Pl. XXIX, fig. 174; Tiffany 1926, Pl. VI, figs. 63–65.

Dioecious, macrandrous; oogonium 1–3, ovoid to broadly ellipsoid, operculate, division superior; oospore ovoid to globose-ellipsoid, usually filling the oogonium, spore wall smooth; antheridium 1–3, sperm 1; basal cell subhemispherical; terminal cell, often an oogonium, apically obtuse; vegetative cell, often irregularly swollen, 6–10×15–33μ; oogonium 24–28×30–36μ; oospore 21–27×23–30μ; antheridium 7–10×8–11μ; basal cell 14–17×12–16μ.

United States: Iowa; India.

Originally found in India, this species was only completely described from the Iowan material. It bears some resemblance to *Oe. pisanum* below. It is found almost entirely epiphytic on submerged leaves, on Pithophora, on Cladophora, and on other species of Oedogonium.

99. **Oe. pisanum** Wittrock.

(Pl. XXXVIII, figs. 363 and 364.)

1876, p. 50, Pl. 13, fig. 28; *Oe. subpisanum* Lewin 1888, p. 17, Pl. 3, figs. 49–52; Hirn 1900, p. 181, Pl. XXIX, fig. 175; Heering 1914, p. 203, fig. 291; Tiffany 1926, p. 97.

Dioecious, macrandrous; oogonium 1 (rarely 2–3), ellipsoid-ovoid to ovoid, operculate, division superior; oospore ovoid to ellipsoid, nearly filling oogonium, spore wall smooth; antheridium 1–4; sperms 2, division horizontal; basal cell elongate; terminal cell piliferous; vegetative cell 5–12×12–72μ; oogonium 23–29 (–32)×34–43 (–45)μ; oospore 21–25×27–37μ; antheridium 4–9×5–9μ.

United States: Iowa, Illinois, Ohio, Mississippi; Austria, Italy, Spain; Africa.
99a. Var. gracilis Transeau and Tiffany.

(Pl. XXXVIII, figs. 365 and 366.)

1919, p. 241; Tiffany 1926, p. 98, Pl. III, figs. 31-34.

Oogonium and oospore ellipsoid to ellipsoid-ovoid; vegetative cell, female 6–9×18–48µ, male 5–8×16–45µ; oogonium 16–20×20–30µ; oospore 15–18×18–28µ; antheridium 5–7×5–10µ.

United States: Iowa, Illinois, Mississippi.

The combination of small size, elongate basal cell, and piliferous terminal cell is sufficient to characterize the species. The presence of subhemispherical basal cells in Oe. nanum (No. 98) easily separates it from Oe. pisanum. The variety gracilis is smaller. Often epiphytic on other species of algae.

100. Oe. pyriforme Wittrock.

(Pl. XXXVII, fig. 348.)

1874, p. 39; Hirn 1900, p. 303, Pl. XXV, fig. 137.

Monoecious; oogonium 1, pyriform, operculate, division superior; oospore pyriform, filling or not filling oogonium, spore wall smooth; antheridium 1–3, subepigynous, epigynous, hypogynous, or scattered; sperms 2, division horizontal; vegetative cell 13–16×48–90µ; oogonium 40–46×(44–)48–60µ; oospore 36–42×36–44µ; antheridium 10–12×8–12µ.

Tasmania; British Columbia.

The pyriform oogonium is characteristic. The dimensions of Oe. pyriforme separate it from Oe. simplex (No. 102) and Oe. pyridum (No. 103). Originally found in Tasmania, the above complete description is furnished from material collected in British Columbia by Mr. G. H. Wailes.

101. Oe. gunnii Wittrock.

(Pl. XXXIV, fig. 318.)

1874, p. 37; Hirn 1900, p. 298, Pl. XXIII, fig. 119.

Monoecious; oogonium 1–4, subdepressed- or depressed-globose, operculate, division median, narrow but distinct; oospore same form as oogonium and filling it, spore wall smooth, outer layer thick and hyaline, inner brown; antheridium subepigynous; vegetative cell 6–9×30–85µ; oogonium 23–29×19–29µ; oospore 22–27×17–23µ; antheridium 6×12µ.

United States: Alabama; Australia.

Material collected in Alabama by Professor E. N. Transeau shows Oe. gunnii to be definitely monoecious. Its distinctly narrow median division of the oogonium separates it from the imperfectly known Oe. poecilosporum (No. 224).
102. *Oe. simplex* Hirn.

(Pl. XXXVI, fig. 340.)

1900, p. 158, Pl. XXIV, fig. 135.

Monoecious; oogonium 1, obovoid-pyriform, operculate, division superior; oospore globose, ellipsoid or obovoid-globose, not filling oogonium, spore wall smooth; antheridium 1–2?, subepigynous; sperms 2, division horizontal; vegetative cell 11–13×35–58μ; oogonium 26–32×33–40μ; oospore (22–)24–30×23–30μ; antheridium 8–10×7–10μ.

Brazil.

Cf. *Oe. pyriforme* (No. 100).

103. *Oe. pyrulum* Wittrock.

(Pl. XXXVII, fig. 349.)

1872, p. 2; Hirn 1900, p. 158, Pl. XXV, fig. 136.

Monoecious; oogonium 1, globose-pyriform, operculate, division superior; oospore subdepressed-globose or subglobose, not filling oogonium, spore wall smooth; antheridium 1, epigynous or hypogynous or rarely subepigynous; basal cell elongate; terminal cell apically broadly acute; vegetative cell 8–11×30–75μ; oogonium 30–33×31–35μ; oospore 26–29×24–28μ; antheridium 8–9×10–11μ.

Sweden; Ceylon.

(Pl. XXXVII, fig. 350.)

1928, p. 107, Pl. 13, figs. 1–4 (as v. *amplior*).

Larger oogonium; vegetative cell 9–12×40–64μ; oogonium 34–40×30–44μ; oospore 26–28×26–28μ, not filling oogonium; antheridium subepigynous 10×6μ.

British Columbia.

Oe. pyrulum is separated from the species of the genus having pyriform or subpyriform oogonia largely by dimensions. The variety *amplius* has larger oogonia than the type and more nearly approaches the size of *Oe. pyriforme* (No. 100).

104. *Oe. loricatum* Hirn.

(Pl. XXXVI, fig. 339.)

1895, p. 22, Pl. 1, fig. 6; 1900, p. 156, Pl. XXIV, fig. 133.

Monoecious; oogonium 1 (rarely 2), subpyriform-globose, sometimes subglobose, operculate, division superior; oospore subglobose or subdepressed-globose, quite filling oogonium, spore wall smooth; antheridium 1–2, subepigynous; sperms 2, division horizontal; vegetative cell 8–11×30–75μ; oogonium 23–28×23–40μ; oospore 22–26×21–24μ; antheridium 7–8×5–7μ.

Finland.

This species is similar to *Oe. pithophorae* (No. 106) below, but the latter has globose and slightly larger oospores.
105. **Oe. sphaerandrium** Wittrock and Lundell.

(Pl. XXXVI, fig. 337.)

In Wittr. 1874, p. 7; *Oe. subcapitatum* Hirn 1895, p. 13, Pl. 1, fig. 1; Hirn 1900, p. 155, Pl. XXIV, figs. 129 and 130; Borge 1913, p. 31, fig. 2.

Monoecious; oogonium 1–4, subpyriform- to subdepressed-globose, operculate, division a little above median; oospore subdepressed- or depressed-globose, nearly filling oogonium, spore wall smooth, antheridium to 6-seriate, subepigynous or scattered; sperm 1; vegetative cell capitellate, sometimes nodulose; basal cell subhemispherical, terminal cell piliform; vegetative cell 4–10×6–40μ; oogonium 18–23×18–23μ; oospore 16–21×14–19μ; antheridium 6–8×5–6μ.

Austria, Finland, Germany, Sweden; Siberia.

The capitellate (sometimes nodulose) vegetative cells, the small size, and supramedian operculum are characteristic.

106. **Oe. pithophorae** Wittrock.

(Pl. XXXVI, fig. 338.)

1878, p. 141; Hirn 1900, p. 157, Pl. XXIV, fig. 134.

Monoecious; oogonium 1, pyriform-globose, operculate, division superior; oospore globose, almost filling oogonium, spore wall smooth, often thickened; antheridium 1–?, subepigynous; basal cell elongate; vegetative cell 9–11×24–48μ; oogonium 26–30×27–35μ; oospore 25–29×24–29μ; antheridium 8–10×7–9μ.

St. Thomas, West Indies.
Epiphytic on *Pithophora cleveana* Wittrock.
Cf. *Oe. porrectum* (No. 97).

107. **Oe. autumnale** Wittrock.

(Pl. XXXVI, fig. 341.)

1874, p. 11; Hirn 1900, p. 167, Pl. XXVI, fig. 151.

Monoecious; oogonium 1, obovoid-globose, operculate, division superior; oospore globose or subglobose, completing oogonium (or nearly so), spore wall smooth; antheridium 1–2, subepigynous, hypogynous, or scattered; sperms 2, division horizontal; basal cell elongate; terminal cell broadly apically acute; vegetative cell 16–20×25–50μ; oogonium 39–45×45–51μ; oospore 37–42×37–44μ; antheridium 15–18×9–10μ.

United States: Pennsylvania; Finland, Italy, Sweden, Latvia.
Cf. *Oe. crispum* (No. 109).

108. **Oe. obesum** (Wittrock) Hirn.

(Pl. XXXVII, fig. 347.)

1900, p. 166, Pl. XXVI, fig. 148; *Oe. pyrulim* Wittr. var. obesum Wittr. 1876, p. 144, Pl. 13, fig. 20.

Monoecious; oogonium 1, obovoid-globose, operculate, division superior; oospore globose, not quite filling oogonium, spore wall smooth, often thickened; antheridium 1–2, subepigynous or more rarely sub-
hypogynous; sperms 2, division horizontal; vegetative cell 12-15×35-75μ; oogonium 40-43×38-44μ; oospore 33-35×33-35μ; antheridium 11-14×10-15μ.

United States: Massachusetts; Austria, Bulgaria, Finland, France; Ceylon; Brazil.

Cf. *Oe. crispum* (No. 109).

109. **Oe. crispum** (Hassall) Wittrock.

(Pl. XXXV, fig. 319.)

Vesiculifera crispa Hass. 1845, p. 203, Pl. 52, fig. 8; *Oe. crispum* Wittr. 1874, p. 10; 1876, p. 45; *Oe. rostellatum* Pringsh. 1858, p. 69, Pl. 5, fig. 1; (?) *Vesiculifera vernalis* Hass. 1843, p. 431; (?) *V. candolleani* Hass. 1845, p. 208, Pl. 52, fig. 9; *Oe. vernale* Wittr. 1874, p. 10; *Oe. crispum* (Hass.) Wittr. var. *elongatum* Wittr. 1876, p. 45; *Oe. hispanicum* Lewin 1888, p. 16, Pl. 2, figs. 40-42; *Hirn* 1900, p. 159, Pl. XXV, figs. 138 and 139; *Oe. crispum* (Hass.) Wittr. *f. vernale* (Hass. ; Witt.) *Hirn* 1900, p. 161, Pl. XXV, fig. 141; *Heering* 1914, p. 214, fig. 334; *Tiffany* 1926, p. 101, Pl. III, fig. 29.

Monoecious; oogonium usually 1, obovoid-globose, operculate, division superior; oosphere globose or subglobose, quite filling the oogonium, spore wall smooth; antheridium 1-5, subepigynous or hypogynous; sperms 2, division horizontal; basal cell elongate, terminal cell apically obtuse; vegetative cell (10-)12-16×35-80μ; oogonium 37-45×41-53μ; oospore 35-43×37-43μ; antheridium 8-14×7-12μ.

United States: Colorado, Pennsylvania, California, Michigan, Mississippi, Illinois, Ohio, Iowa, Alaska; Austria, England, Denmark, Finland, France, Germany, Italy, Spain, Sweden; Africa; Asia; Australia; Bolivia; Patagonia; Greenland; Vancouver, British Columbia.

109a. **Form granulosum** (Nordstedt) *Hirn.*

(Pl. XXXV, fig. 322.)

1900, p. 162, Pl. XXV, fig. 142; *Oe. crispum* (Hass.) Wittr. var. *granulosum* Nordst. 1877, p. 24; *De Toni* 1889, p. 37.

Oogonium subglobose, filled by oosphere; antheridium subepigynous; spore wall of oosphere punctate-granulate; vegetative cell 14-17×35-63μ; oogonium 40-43×42-45μ; oospore 37-40×37-40μ; antheridium 11-13×8-11μ.

Sweden.

109b. **Form inflatum** *Hirn.*

(Pl. XXXV, fig. 323.)

1900, p. 161, Pl. XXV, fig. 140; *Oe. vesicatum* Link var. *flavescens* Kuetz. in Rabenh. Alg. Sachs. No. 271, 1853; *Oe. rostellatum* Pringsh. *in ibid.* No. 2275, 1872.

Oogonium obovoid-globose; vegetative cell 12-16×35-95μ; oogonium 40-50×45-53μ; oospore 37-45×38-45μ; antheridium 8-12×9-12μ.

United States: Michigan, Florida, Mississippi; Switzerland, Sweden, Germany; South Africa.
The Oedogoniaceae

109c. Var. gracilescens Wittrock.
(Pl. XXXV, fig. 321.)

More slender than the type; oogonium varying from obovoid-globose to subellipsoid; oospore globose to ovoid; vegetative cell 10–14×30–70μ; oogonium 33–39×33–51μ; oospore 32–37×33–42μ; antheridium 9–10×7–9μ.

United States: Massachusetts, Iowa, Missouri, Ohio, Illinois, Mississippi, Louisiana, Minnesota; Austria; Brazil; Morocco, Angola.

109d. Var. hawaiense Nordstedt.
(Pl. XXXV, fig. 320.)

1878, p. 20, Pl. 2, figs. 9 and 10; Hirn 1900, p. 165, Pl. XXVI, fig. 147.

Oogonium subobovoid-globose to pyriform-globose, not filled by oospore; terminal cell mucronate or shortly setigerous; vegetative cell 10–16×20–64μ; oogonium 30–38×31–38μ; oospore 27–32×27–33μ; antheridium 8–11×6–8μ.

Hawaii.

109e. Var. uruguayense Magnus and Wille.
(Pl. XXXV, fig. 324.)

In Wille 1884, p. 39, Pl. 2, fig. 63; *Oe. crispum* (Hass.) Wittr. *f. gracilis* in Wittr. and Nordst. Alg. Exs. No. 704, 1886; Hirn 1900, p. 164, Pl. XXVI, fig. 145; *Oe. crispum* (Hass.) Wittr. var. uruguayense M. & W. *f. proprium* Hirn 1900, p. 164, Pl. XXVI, fig. 146.

Oogonium subobovoid-globose, usually filled by oospore; antheridium subepigynous or hypogynous or scattered; vegetative cell 10–14×16–51μ; oogonium 30–38×30–45μ; oospore 27–35×27–37μ; antheridium 8–13×6–12μ.

United States: Pennsylvania; Argentina, Brazil.

Oe. crispum is perhaps the commonest monoecious member of the genus among the operculate forms. Its vegetative cells are more slender than those of *Oe. autumnale* (No. 107) and there is less variation in the relative size of its oogonium and oospore than in *Oe. obesum* (No. 108). The forms and varieties of the species are separable from one another and the type largely on the basis of relative shapes and sizes of vegetative and reproductive cells. (See key).

110. *Oe. rupestre* Hirn.
(Pl. XXXVI, fig. 345.)

1900, p. 168, Pl. XXVI, fig. 152.

Monoecious; oogonium 1, suboboviform-globose, operculate, division superior; oospore globose, not filling oogonium, spore wall smooth; antheridium 1–3, subepigynous or hypogynous; sperms 2, division
horizontal; vegetative cell 20–27×26–67μ; oogonium 48–58×48–60μ; oospore 43–50 (–54) ×43–50 (–54)μ; antheridium 18–22×9–11μ.

Austria, France, Ireland, Latvia.

110a. Form pseudautumnale Hirn.

(Pl. XXXVI, fig. 346.)

1900, p. 169, Pl. XXVII, fig. 153.

United States: Mississippi; France, Germany.

Oe. rupestre has larger vegetative cells than any of the other monoecious operculate species with obovoid-globose to subglobose oogonia. It is to be compared with Oe. crispum (No. 109). F. pseudautumnale has smaller fruiting cells than the type.

111. Oe. ahlstrandii Wittrock.

(Pl. XXXVIII, fig. 358.)

In Wittr. and Nordst. Exs. No. 401, 1882; Hirn 1900, p. 183, Pl. XXIX, fig. 179; Collins 1909, p. 247.

Monoecious; oogonium 1, ellipsoid, operculate, division superior; oospore ellipsoid, filling oogonium, wall smooth; antheridium 1–2, hypogynous; sperms 2, division horizontal; terminal cell apically obtuse; vegetative cell 10–18×30–180μ; oogonium 35–42×57–69μ; oospore 34–41×53–62μ; antheridium 13–17×9–12μ.

The large oogonium of this species separates it from all other ellipsoid, operculate, monoecious forms, except the still larger Oe. pachydermum, below.

112. Oe. pachydermum Wittrock and Lundell.

(Pl. XXXIX, figs. 377 and 378.)

In Wittr. 1870, p. 125; Hirn 1900, p. 188, Pl. XXX, fig. 187.

Monoecious; oogonium 1 (rarely 2), ellipsoid, operculate, division superior, wall frequently thickened; oospore ellipsoid, not filling oogonium, spore wall smooth; antheridium 1–3, hypogynous or subepigynous, often terminal; sperms 2, division horizontal; basal cell elongate; terminal cell apiculate; vegetative cell 21–27×34–120μ; oogonium 50–70×75–100μ; oospore 40–60×50–80μ; antheridium 18–21×10–12μ.

Finland, Sweden.

Cf. Oe. ahlstrandii (No. 111).
113. *Oe. kirchneri* Wittrock.
(Pl. XXXVIII, fig. 371.)

1882, p. 104; *Oe. alternans* Kirch. 1878, p. 53; Hirn 1900, p. 183, Pl. XXIX, fig. 178.

Monoecious; oogonium 1, ellipsoid or ovoid-ellipsoid, operculate, division superior; oospore of same form as oogonium, nearly filling oogonium, spore wall smooth; antheridium 1–2, hypogynous and alternating with oogonium; sperms 2, division horizontal; terminal cell obtuse; vegetative cell 8–15×16–60μ; oogonium 20–24×34–48μ; oospore 19–23×32–41μ; antheridium 9–13×4–7μ.

Germany.

Chiefly characterized among those with ellipsoid, operculate oogonia by the alternation of oogonium and antheridium.

114. *Oe. gracillimum* Wittrock and Lundell.
(Pl. XXXVIII, fig. 373.)

In Wittr. 1874, p. 15; Wolle 1887, p. 74, Pl. 75, fig. 2; Hirn 1900, p. 184, Pl. XXIX, fig. 180; Collins 1909, p. 247; Heering 1914, p. 218, fig. 318; Tiffany 1926, p. 100, Pl. 1, fig. 9.

Monoecious; oogonium 1, oblong, operculate, division superior; oospore oblong-ellipsoid, not filling oogonium, spore wall smooth; antheridium 1; sperms 2, division horizontal; basal cell elongate; vegetative cell 4–7×16–42μ; oogonium 14–19×34–40μ; oospore 13–17×24–32μ; antheridium 3–5×4–7μ.

United States: Iowa, Pennslyvania, Michigan, Illinois, Ohio, Mississippi, Kentucky; Sweden; Angola.

114a. Form *majus* West and West.

1897, p. 4; Hirn 1900, p. 184.

Vegetative cell 6–7×20–40μ; oogonium 20–23×32–35μ; oospore 17×24μ.

Africa.

Oe. gracillimum almost invariably has some oogonia with imperfectly developed oospores.

115. *Oe. oblongellum* Kirchner.
(Pl. XXXVIII, fig. 372.)

In Hirn 1900, p. 182, Pl. XXIX, fig. 177.

Monoecious; oogonium 1, ellipsoid-ovoid, operculate, division superior; oospore ellipsoid, nearly filling oogonium, spore wall smooth; antheridium 1–2, hypogynous or scattered; sperms 2, division horizontal; terminal cell obtuse; vegetative cell 7–9×14–35μ; oogonium 20–24×25–33μ; oospore 18–22×21–30μ; antheridium 6–8×4–12μ.

United States: Illinois, Mississippi; Germany; Burma.

Oe. oblongellum is near *Oe. oblongum*, below, but the latter almost invariably has oogonia not filled lengthwise by oospores; the former has oogonia nearly completely filled.
Oedogonium

116. Oe. oblongum Wittrock.
(Pl. XXXVIII, fig. 367.)

1872, p. 2; 1874, p. 15; Hirn 1900, p. 185, Pl. XXIX, fig. 181; Heering 1914, p. 218, fig. 319; Collins 1918, p. 66; Tiffany 1926, p. 101, Pl. III, fig. 28.

Monoecious; oogonium 1, oblong, operculate, division superior; oospore ellipsoid to ovoid, not filling oogonium longitudinally, spore wall smooth; antheridium 1–3, sperms 2, division horizontal; basal cell elongate; vegetative cell 6–11×20–86μ; oogonium 20–26×41–60μ; oospore 19–23×30–36μ; antheridium 6–9×7–9μ.

United States: Iowa, Illinois, Mississippi; Siberia; New Caledonia; India; Austria, Denmark, Finland, Germany, Russia, Norway, Latvia, Sweden.

116a. Form majus (Nordstedt) Hirn.
(Pl. XXXVIII, fig. 370.)

1900, p. 185, Pl. XXIX, fig. 182; Oe. oblongum Wittr. var. majus Nordst. in Wittr. 1876, p. 45, Pl. 13, fig. 21.

Vegetative cell 8–11×35–75μ; oogonium 26–28×42–50μ; oospore 22–26×31–34μ; antheridium 8–9×9–10μ.

United States: Michigan; Finland, Italy, Sweden; Morocco.

116b. Form sphaericum (Hallas) Hirn.
(Pl. XXXVIII, figs. 368 and 369.)

1906, p. 18, Pl. III, fig. 12; Oe. sphaericum Hallas 1905, p. 406, fig. 13.

Oospore globose; vegetative cell 6–11×20–85μ; oogonium 21–28×30–52μ; oospore 16–26×16–26μ; antheridium 8×6μ; basal cell 9×72μ.

Denmark.

Cf. Oe. oblongellum (No. 115). The f. sphaericum is easily separated from the species by its globose oospore; f. majus has slightly larger oogonia.

117. Oe. itzigsohnii De Bary.
(Pl. XXXIX, figs. 379 and 380.)

1854, p. 56, Pl. 3, figs. 29–32; Wittr. 1870, p. 123; Oe. platygynum Wittr. in Eichler 1883, p. 2, Pl. 9, fig. 2; Hirn 1900, p. 177, Pl. XXVIII, fig. 167.

Monoecious; oogonium 1, ellipsoid, with median, conically obtuse projections, appearing stellate in vertical view, with 7–10 radiations, operculate, division inframedian; oospore globose, not completing oogonium, spore wall smooth; antheridium 1–2; terminal cell apically obtuse or apiculate; vegetative cell 8–10×25–60μ; oogonium 34–40×32–40μ; oospore 20–23×20–23μ; antheridium 8–9×8–15μ.

United States: Massachusetts; Germany, Poland, Sweden, Austria, England, Bulgaria, Denmark, Latvia, Russia, France.
117a. Form *heteromorphum* Hirn.

(Pl. XXXIX, fig. 381.)

1900, p. 178, Pl. XXVIII, fig. 168.

Processes on oogonium intermediate between conically obtuse projections and mammiform protuberances; vegetative cell 6–9 × 30–110 μ; oogonium 33–40 × 35–40 μ; oospore 20–25 × 20–25 μ.

Germany, Sweden.

(Pl. XXXIX, fig. 382.)

1893, p. 97; 1897, p. 4; Hirn 1900, p. 178, Pl. XXVIII, fig. 169.

Smaller; processes of oogonium acutely rounded; vegetative cell 5–7 × 25–70 μ; oogonium 28–30 × 28–30 μ; oospore 16–20 × 16–20 μ.

England.

Oe. itzigsohnii is near *Oe. mammiferum* below, but differs in having conically obtuse projections, instead of mammiform projections, on the oogonia. Var. *minus* is slightly smaller than the type and f. *heteromorphum* has oogonial projections somewhat intermediate between the species proper and *Oe. mammiferum*.

118. *Oe. mammiferum* Wittrock; Nordstedt.

(Pl. XXXIX, figs. 383–385.)

Wittr. 1874, p. 16; Nordst. 1877, p. 25, Pl. 3, figs. 4–6; *Oe. huillense* West 1897, p. 5, Pl. 365, figs. 7 and 8; Hirn 1900, p. 175, Pl. XXVIII, figs. 165 and 166.

Monoecious; oogonium 1 (rarely 2–3), ellipsoid, with mammiform projections appearing as 7–9 radiations seen vertically, operculate, division inframedian, very narrow; oospore globose or subdepressed-globose (rarely depressed-globose), not filling oogonium, spore wall smooth; antheridium 1, subepigynous; basal cell elongate; vegetative cell 5–8 × 20–50 μ; oogonium 20–28 × 20–30 μ; oospore 12–17 (–20) × 12–16 μ; antheridium 6 × 7 μ.

United States: Massachusetts; Norway, Sweden; India; Africa.

Cf. *Oe. itzigsohnii* above.

119. *Oe. undulatum* (Brebisson) Al. Braun; Wittrock.

(Pl. XLII, fig. 407.)

Confera undulata Brebi.; *Oe. undulatum* Al. Braun in De Bary 1854, p. 94; Wittr. 1870, p. 130; *Cymatoneema confervaceum* Kuetz. 1849, p. 375 and 1853, p. 15, Pl. 47, fig. 1; Borge 1899, p. 4, Pl. 1, fig. 2; *Oe. undulatum* A. Br. var. *interrupte-incisum* Schroeder 1897, p. 10, Pl. 2, fig. 1; *Oe. sp*. Moebius 1894, p. 320, Pl. 1, fig. 21; *Oe. undulatum* A. Br. var. *Moebissii* Schmidle 1896, p. 207, Pl. 9, fig. 1; *Oe. undulatum* (Brebi.) Al. Br. var. *Moebissii* Schmidle in Borge 1896, p. 5; Hirn 1900, p. 257, Pl. XLV, figs. 272–275.

 Dioecious, nannandrous, gymandrosporous or idioandrosporous; oogonium 1–2, subglobose or ellipsoid-globose, operculate, division inferior, wide; oospore globose or subglobose, quite filling oogonium,
Oedogonium 119

spore wall smooth, sometimes thick; androsporangium to 7-seriate; vegetative cell undulate (4 undulate constrictions); basal cell elongate, not undulate; terminal cell (sometimes oogonium) apically obtuse; dwarf male elongate-obconic, usually on suffultory cell, rarely on other vegetative cell near oogonium, antheridium interior; vegetative cell 15–22×45–110µ; oogonium 48–56×50–75µ; oospore 42–50×42–52 (–60)µ; androsporangium 15–21×7–14µ; dwarf male 8–10×48–65 (–70)µ.

United States: Michigan, Florida, Indiana; Uruguay; Australia; Manchuria, China; Austria, England, Finland, -France, Germany, Norway, Poland, Sweden, Russia, Latvia; Columbia; Africa (Victoria).

119a. Var. americanum Transeau.
(Pl. XLII, fig. 408.)

1917, p. 232.

Vegetative cell as in type; oogonium much larger; vegetative cell 15–22×45–110µ; oogonium 58–68×60–80µ; oospore 48–60×48–56µ.

United States: Michigan.

119b. Form senegalense (Nordstedt) Hirn.
(Pl. XLII, fig. 409.)

1900, p. 261, Pl. XLV, figs. 276 and 277; Oe. undulatum (Breb.) A. Br. var. senegalense Nordst. 1880, p. 13; P. B. A. No. 73.

Oogonium and oospore smaller than the type; dwarf male shorter; oogonium to 5-seriate; vegetative cell with three median swellings repand, the terminal swelling entire, 15–22×45–110µ; oogonium 42–52×44–63µ; oospore 37–44×36–44µ; androsporangium 15–19×9–18µ; dwarf male 6–8×37–44µ.

United States: Massachusetts; Africa: Senegal.

The undulate vegetative cells are characteristic. It bears some relation in the vegetative state to Oe. nodulosum (No. 96). The var. americanum has considerably larger oogonia than the type and f. senegalense has slightly smaller fruiting cells. A number of variations of this species are on record in algological literature, but the two above seem the only really tenable ones outside the species proper.

120. Oe. nebraskense Ohashi.
(Pl. XLII, figs. 410–413.)

Oe. nebraskensis Ohashi 1926, p. 213, figs. 1–20.

Dioecious, nannandrous, gynandrosporous; oogonium 1–4, flask-shaped or obovoid, pore supramedian; oospore subspherical or ovoid, not quite filling oogonium, outer layer of spore wall smooth, middle layer punctate, inner layer smooth; androsporangium 1–4, basal cell elongate; terminal cell attenuate-obtuse; dwarf male curved, on suffultory cell,
antheridium exterior, 1-4; vegetative cell slightly capitellate; filament 20-41 (-50) celled; vegetative cell, terminal 9-12×170-305μ, median 20-27×57-160μ, basal 22-35×79-230μ; suffultory cell 41-58×93-130μ; oogonium 60-67×70-79μ; oospore 53-64×60-76μ; androsporangium 20-25×22-40μ; dwarf male stipe 12-19×47-68μ; antheridium 9-13×17-20μ.

United States: Nebraska (near Lincoln).
The only nannandrous species combining the characters of supramedian pore and punctate oospore.

121. **Oe. aster** Wittrock.

(Pl. XLIII, fig. 416.)

1872, p. 4; 1874, p. 62; De Toni 1889, p. 62; Hirn 1900, p. 198, Pl. XXXII, fig. 202; Fremy and Meslin 1926, p. 124, fig. 9.

Dioecious, nannandrous; oogonium 1, subdepressed-globose, pore median; oospore subdepressed-globose or subglobose, not completely filling oogonium; outer layer of spore wall echinate; suffultory cell sometimes a little swollen; terminal cell obtuse; dwarf male a little curved, on suffultory cell, stipe sometimes 2-celled, antheridium exterior, 1-2; vegetative cell 7-13×50-100μ; oogonium 33-35×34-39μ; oospore (with spines) 31-32×25-30μ; dwarf male stipe 6-7×20-25μ; antheridium 5-6×7-8μ.

United States: Illinois; Sweden, Germany, Latvia, France; Ceylon.

Oe. aster is near **Oe. pugens** (No. 125) but the latter is larger in all dimensions.

122. **Oe. hystricinum** Transeau and Tiffany.

(Pl. XLIII, fig. 414.)

1919, p. 240, Pl. XIV, figs. i–j; Tiffany 1926, p. 102, Pl. VIII, figs. 85 and 86.

Dioecious, nannandrous, idioandrosporous; oogonium 1, globose or somewhat obovoid, pore median; oospore globose to subglobose, nearly filling the oogonium, outer spore wall densely covered with spines; suffultory cells swollen; androsporangium 3-6; terminal cell obtuse; basal cell elongated; dwarf male nearly straight, resting on the suffultory cell, antheridium exterior, 1; female vegetative cell 8-15×42-100μ, male 6-9×50-67μ; suffultory cell 16-19×42-70μ; oogonium 30-40×36-53μ; oospore (including spines) 23-38×28-43μ; androsporangium 6-8×8-15μ; dwarf male stipe 6-10×20-32μ; antheridium 5-6×6-10μ.

This species is near **Oe. hystrich**, below, but differs in its smaller size and in its swollen suffultory cells.

123. **Oe. hystrich** Wittrock.

(Pl. XLIII, fig. 417.)

1870, p. 133; Wolle 1887, p. 87, Pl. 84, fig. 8; Hirn 1900, p. 213, Pl. XXV, fig. 218.

Dioecious, nannandrous, gynandrosporous (or possibly idioandrosporous); oogonium 1, ellipsoid, pore median; oospore ellipsoid,
nearly filling oogonium, outer spore wall echinate; androsporangium 1–3; terminal cell obtuse; dwarf male slightly curved, on suffultory cell; antheridium exterior, 1; vegetative cell 17–28×30–120μ; oogonium 38–48×45–65μ; oospore 37–46×43–55μ; androsporangium 17–18×13–18μ; dwarf male stipe 10–11×22–25μ; antheridium 6–8×9–14μ.

United States: Pennsylvania; Finland, Germany, Sweden.

123a. Var. canadense Tiffany.

(Pl. XLIII, fig. 418.)

1929, p. 74; Oe. hystricinum Wittr. in Skuja 1927, p. 99, Pl. II, fig. 13.

Pore inframedian; suffultory cell enlarged; vegetative cell 14–25×80–125μ; suffultory cell 24–30×64–72μ; oogonium 40–53×52–64μ; oospore 38–48×40–60μ; androsporangium 16–20×15–30μ; antheridium 7–8×8–14μ; dwarf male stipe 9–12×28–40μ.

British Columbia; Latvia.

123b. Var. subglobosum Wittrock.

(Pl. XLIII, fig. 419.)

1872a, p. 22, Pl. 1, fig. 7; Hirn 1900, p. 214, Pl. XXXV, fig. 219.

Smaller; oogonium and oospore subglobose; vegetative cell 17–21×35–93μ; oogonium 36–38×41–43μ; oospore 34–36×39–40μ; androsporangium 16–18×9–14μ; dwarf male stipe 10×23μ; antheridium 7×7μ.

Sweden.

The species is to be compared with Oe. hystricinum (No. 122). The variety canadense differs from the type in its inframedian pore and slightly swollen suffultory cell; var. subglobosum is smaller with subglobose oogonium.

124. Oe. echinospermum Al. Braun.

(Pl. XLIII, figs. 420 and 421.)

In Kuetzing 1849, p. 366; Kuetzing 1853, p. 12, Pl. 36, fig. 2; Wittr. 1870, p. 129; Hirn 1900, p. 199, Pl. XXXIII, fig. 201; P. B. A. No. 1673.

Dioecious, nannandrous, gynandrosporous or idioandrosporous; oogonium 1, ellipsoid-globose or subglobose, pore median; oospore globose, quite filling oogonium, outer layer of spore wall echinate; androsporangium 1–5; dwarf male a little curved, on suffultory cell, antheridium exterior, 1–2; vegetative cell 18–30×45–130μ; oogonium 39–50×41–57μ; oospore (with spines) 38–47×38–49μ; androsporangium 21–25×9–15μ; dwarf male stipe 10–15×26–35μ; antheridium 6–12×6–15μ.

United States: Illinois, Ohio, Alabama, Mississippi, Massachusetts, New York, New Jersey, Pennsylvania, Michigan; Austria, Scotland, England, Germany, Latvia, Finland, France, Sweden; Australia; British Columbia.
124a. Var. horridum Hirn.
(Pl. XLIII, fig. 422.)

1900, p. 201, Pl. XXXIII, fig. 205; Oe. echinospermum A. Br. var. Wolle 1887, p. 86, Pl. 85, figs. 6-9.

Larger with longer and more dense spines; antheridium pluri-cellular.

United States: Florida.

The species is one of the most easily recognized among the nannandrous forms by its echinate oospore, median pore, and large dimensions (as compared with Oe. hystrix, Oe. aster, and Oe. pungens). The variety horridum has no record other than that of Wolle, and its retention in the genus is open to considerable question.

125. Oe. pungens Hirn.
(Pl. XLIV, figs. 423 and 424.)

1900, p. 199, Pl. XXXII, fig. 203.

Dioecious, nannandrous, gynandrosporous; oogonium 1, sub-depressed-globose (or nearly subglobose), pore median or a little above median; oospore subglobose, almost filling oogonium, outer spore wall echinate; androsporangium 1–?, hypogynous; dwarf male a little curved, on suffultory cell, antheridium exterior, 1–2; vegetative cell 12–16×50–94μ; oogonium 40–48×40–50μ; oospore (with spines) 37–44×35–43μ; androsporangium 14–16×10–15μ; dwarf male stipe 9–12×20–30μ; antheridium 6–7×8–12μ.

United States: South Carolina, Illinois.
Cf. Oe. aster (No. 121).

126. Oe. exspirale Tiffany.
(Pl. XLIV, figs. 425 and 426.)

1924, p. 184, Pl. II, figs. 1–3; 1926, p. 102, Pl. IX, figs. 100–102.

Dioecious, nannandrous, idioandrosporous; oogonium 1 (rarely 2), subglobose or obovoid-globose (rarely subhexagonal), pore median; oospore globose or subglobose, nearly filling the oogonium, spore wall of two layers; outer layer marked by 5–8 spiral ribs uniting at the poles, the polar axis always placed in a transverse position, never parallel with the filament, the inner layer smooth; suffultory cell swollen; androsporangium 1–6; basal cell elongate; dwarf male a little curved, situated on the suffultory cell, with exterior antheridium 1–3; vegetative cell 8–12×60–88μ; suffultory cell 16–28×60–88μ; oogonium 40–44×41–18μ; oospore 32–38×38–40μ; androsporangium 12–16×14–20μ; dwarf male stipe 14–16×30–40μ; antheridium 8–12×14–16μ.

United States: Iowa, Ohio, Mississippi.

This species should be compared with Oe. spirale (No. 128) and Oe. illinoisense (No. 127). It differs from the former in having smaller oogonia and oospores and in its tumid suffultory
cells; it is separated from the latter on the basis of smaller dimensions.

127. **Oe. illinoisense** Transeau.

(Pl. XLIV, figs. 431-433.)

1914, p. 209, Pl. XXIX, figs. 6-8.

Dioecious, nannandrous, gynandrosporous; oogonium 1, subglobose to obovoid-globose, pore median; oospore globose or subglobose, nearly filling oogonium, outer spore wall with 4-7 spiral ribs, uniting at poles, polar axis always transverse to axis of filament; suffultory cell enlarged; androsporangium 1-5; basal cell elongate; dwarf male slightly curved, on suffultory cell; antheridium exterior, 1-4; vegetative cell 13-18×80-140μ; suffultory cell 32-40×50-80μ; oogonium 51-60×60-70μ; oospore 45-56×48-66μ; androsporangium 13-17×17-22μ; dwarf male stipe 14-17×37-57μ; antheridium 9-12×15-23μ.

United States: Illinois, Mississippi, Kentucky.

Cf. **Oe. exspirale**, above.

128. **Oe. spirale** Hirn.

(Pl. XLIV, figs. 427 and 428.)

1900, p. 201, Pl. XXXIII, fig. 206.

Dioecious, nannandrous, idioandrosporous; oogonium 1, subglobose or obovoid-globose, pore median; oospore globose or subglobose, not filling oogonium, spore wall double: outer layer with 4-7 spiral ribs, anastomosate, united at the poles, inner layer smooth; androsporangium 1-3; basal cell elongate; dwarf male a little curved, near oogonium, antheridium exterior, 1; vegetative cell 20-33×40-130μ; oogonium 52-60×52-60μ; oospore 46-56×46-56μ; androsporangium 17-22×11-14μ; dwarf male stipe 11-16×41-59μ; antheridium 10-11×18-20μ.

Asia (Java).

128a. **Var. acutum** West and West.

(Pl. XLIV, fig. 430.)

1902, p. 125, Pl. 17, figs. 3-5; Hirn 1906, p. 22, Pl. III, fig. 14.

Spiral ribs larger, irregularly and acutely dentate; vegetative cell 20-26×70-108μ; oogonium 46-56×54-60μ; oospore 37-45×37-45μ; dwarf male stipe 9-12×34-44μ; antheridium 8-9×14-18μ.

United States: Mississippi; Ceylon, India.

128b. **Var. latviense** Tiffany.

(Pl. XLIV, fig. 429.)

1929, p. 75; **Oe. spirale** Hirn f. in Skuja 1927, p. 102, Pl. II, fig. 14 a-b.

Pore supramedian or superior; vegetative cell 16-20×65-120μ; oogonium 49-60×65μ; oospore (without ribs) 35-45×35-45μ, not filling oogonium, outer wall with 3-6 spirally arranged ribs; dwarf male 12×50μ.

Latvia.
The species should be compared with *Oe. exospirale* (No. 126). The variety *acutum* has smaller oospores and larger ribs; var. *latviense* has a distinctly above-median pore which is sometimes nearly superior.

129. *Oe. depressum* Pringsheim.

(Pl. XLVI, fig. 446.)

1888, p. 69, Pl. 5, fig. 5; Hirn 1900, p. 219, Pl. XLII, fig. 261.

Dioecious, nannandrous, gynandrosporous; oogonium 1 (rarely 2), depressed globose, pore median; oospore depressed globose, not filling oogonium; androsporangium 2-celled; dwarf male oblong-obovoid, on oogonium, antheridium interior; vegetative cell 8–9×25–54μ; oogonium 28×26μ; oospore 23×17–18μ; dwarf male 4–5×14–16μ.

Germany; Greenland.

Cf. *Oe. semiapertum*, below.

130. *Oe. semiapertum* Nordstedt and Hirn.

(Pl. XLVI, fig. 445.)

In Hirn 1900, p. 250, Pl. XLII, fig. 262.

Dioecious, nannandrous, gynandrosporous; oogonium 1 (rarely 2), subhexagonally globose to subpyriform-globose, pore median, rimiform, extending nearly half way round the oogonium; oospore globose or sub-globose, not filling oogonium, spore wall smooth; androsporangium 1–3, hypogynous or subepigynous; terminal cell apically obtuse; dwarf male suberect, on suffultory cell (rarely oogonium), antheridiium exterior; vegetative cell 9–12×38–105μ; oogonium 32–35×33–40μ; oospore 25–29×25–30μ; androsporangium 9–10×10–14μ; dwarf male 8–9×14–15μ.

French Guiana.

This species and *Oe. depressum*, above, are the smallest of nannandrous, medianly poriferous members of the genus having smooth and nearly globose oospores. *Oe. depressum* is separated by its smaller size and non-rimiform pore.

131. *Oe. gallicum* Hirn.

(Pl. XLVII, fig. 453.)

1900, p. 197, Pl. XXXII, fig. 201; *Oe. flavescens* Hass. in Roumeguere Alg. Exs. No. 1173.

Dioecious, nannandrous, (?) idioandrosporous; oogonium 1–2, subhexagonally globose, pore a little above median; oospore of same form as oogonium and quite filling it, spore wall smooth; dwarf male suberect, on suffultory cell (rarely oogonium), antheridium exterior, 1–2; vegetative cell 17–22×51–120μ; oogonium 43–48×44–54μ; oospore 41–46×39–44μ; dwarf male stipe 11–16×26–30μ; antheridium 8–9×7–11μ.

France.

Cf. *Oe. braunii*, below.
132. **Oe. braunii** Kuetzing; Pringsheim.

(Pl. XLVII, fig. 458.)

Kuetzing 1849, p. 366; 1853, p. 12. Pl. 36, fig. 3; Pringsheim 1858, p. 70. Pl. 5, fig. 6; Wolle 1887, p. 79. Pl. 79, figs. 6 and 7; *Oe. calcareum* Cleve var. *gaditanum* Lewin 1888, p. 18. Pl. 3, fig. 53; Hirn 1900, p. 194. Pl. XXXII, fig. 197; Collins 1909, p. 249; Heering 1914, p. 172; Tiffany 1926, p. 102.

Dioecious, nannandrous, gynandrosporous; oogonium 1, ovoid to subglobose, pore median; oospore globose, not filling oogonium, spore wall smooth; androsporangium 1–2; basal cell elongate; terminal cell apically obtuse; dwarf male usually on suffultory cell, stipe somewhat curved; antheridium exterior, 1; vegetative cells 13–15×25–60μ; suffultory cell 16–20×28–50μ; oogonium 30–37×33–43μ; oospore 27–33×27–33μ; androsporangium 13–15×11–12μ; dwarf male stipe 7–12×20–28μ; antheridium 5–8×9–10μ.

United States: Iowa, Illinois, New Jersey, Pennsylvania, Michigan; Austria, England, Denmark, Finland, France, Germany, Spain, Ireland, Latvia, Norway, Sweden; Africa; British Columbia.

132a. **Var. hafniense** (Hallas) Hirn.

(Pl. XLVII, figs. 460–462.)

1906, p. 10, Pl. III, fig. 13; *Oe. hafniense* Hallas 1905, p. 398, fig. 1.

A little smaller; idioandrosporous; oospore globose or angular-globose; vegetative cell 12–15×25–60μ; oogonium 23–30×28–35μ; oospore 21–28×21–28μ; dwarf male stipe 6–8×12–21μ; antheridium 7×7μ.

Denmark.

132b. **Var. zehneri** Tiffany.

(Pl. XLVII, fig. 459.)

1927, p. 204. Pl. IX, fig. 2.

Somewhat larger in all dimensions; oospore ovoid; vegetative cell 12–24×34–72μ; suffultory cell 21–32×48–52μ; oogonium 40–50×48–60μ; oospore 34–44×36–50μ; dwarf male stipe 8–10×16–21μ; antheridium 7–8×8–12μ.

United States: Indiana.

The species is near, but smaller than, *Oe. gallicum* (No. 131) and *Oe. flavescens*, below. Var. *hafniense* is smaller than the type and is idioandrosporous; var. *zehneri* is somewhat larger than the species and has ovoid oospores.

133. **Oe. flavescens** (Hassall) Wittrock.

(Pl. XLIX, fig. 471.)

(? *Vesiculifera flavescens* Hass. 1845, p. 206. Pl. 53, fig. 9; *Oe. flavescens* Witt. 1870, p. 127; *Oe. flavescens* (Hass.) Witt. var. *gynandrosporum* Hirn 1895, p. 16; Hirn 1900, p. 196. Pl. XXXII, figs. 199 and 200; Collins 1909, p. 249; Heering 1914, p. 171, fig. 232; Tiffany 1926, p. 103. Pl. IX, fig. 95.

Dioecious, nannandrous, idioandrosporous or gynandrosporous; oogonium 1, ellipsoid-globose to subglobose, pore median; oospore
The Oedogoniaceae

globose, not quite filling oogonium, spore wall smooth; androsporangium 1–9; dwarf male somewhat curved, on the suffultory cell; antheridium 1–2; vegetative cell 18–23×72–140μ; oogonium 49–52×51–60μ; oospore 45–49×45–49μ; androsporangium 17–20×8–18μ; dwarf male stipe 11–12×36–45μ; antheridium 9–10×15–20μ.

United States: Ohio, Mississippi, Alabama, Massachusetts, Minnesota, Iowa; England, Sweden, Finland.

Cf. Oe. braunii (No. 132).

134. Oe. manschuricum Skvortzow.

(Pl. XLVI, fig. 442.)

1926, p. 434, fig. 8.

Dioecious, nannandrous; oogonium 1, globose, pore supramedian; oospore globose or nearly so, not quite filling oogonium, outer spore wall echinate; dwarf male broadly egg-shaped, unicellular, on oogonium; vegetative cell 14–17×56–85μ; oogonium 30–31×37–38μ; oospore 26–28×20–30μ; dwarf male 13–24×20–37μ.

North Manchuria.

Characterized by its echinate oospores and supramedian pores. To be compared with Oe. hystricinum (No. 122) and Oe. echinospermum (No. 124).

135. Oe. sexangulare Cleve.

(Pl. XLVII, fig. 454.)

In Wittr. 1870, p. 131; Wolle 1887, p. 82, Pl. 79, figs. 8 and 9; Oe. hexagonum Kuetz. in Roumeguere Alg. Ess. No. 294 and Oe. vesicatum Link f. fuscescens Dupray in loc. cit. No. 687; Hirn 1900, p. 211, Pl. XXXV, fig. 216; P. B. A. No. 1679.

Dioecious, nannandrous, gynandrosporous; oogonium 1 (rarely 2), sexangular-ellipsoid, pore a little above median; oospore same form as oogonium and nearly filling it, spore wall smooth; suffultory cell sometimes slightly tumid; androsporangium 1–3; dwarf male on suffultory cell, a little curved, stipe of 2–3 cells, antheridium exterior, 1; vegetative cell 9–16×30–110μ; oogonium 29–33×33–39μ; oospore 27–31×31–36μ; androsporangium 13–14×10–14μ; dwarf male stipe 7–9×21–30μ; antheridium 6–7×9–12μ.

United States: Indiana, Mississippi, New York, Louisiana, Pennsylvania, Kentucky, Michigan; Austria, France, Norway, Sweden.

135a. Var. angulosum (Hallas) Hirn.

(Pl. XLVII, figs. 455 and 456.)

1906, p. 21, Pl. III, fig. 17; Oe. angulosum Hallas 1905, p. 402, fig. 7.

Smaller, oospore not filling oogonium; vegetative cell 10–14×15–54μ; oogonium 19–30×30–42μ; oospore 17–28×21–30μ; dwarf male stipe 6–7×18–21μ; antheridium 6×7μ.

Denmark.
Oedogonium

135b. Var. majus Wille.

(Pl. XLVII, fig. 457.)

1880, p. 68; Hirn 1900, p. 212, Pl. XXV, fig. 217.

Larger, pore median; vegetative cell 15–23×30–68 μ; oogonium 36–42 (–48)×(36–) 41–45 μ; oospora 34–40×39–43 μ; androsporangium 14–18×8–10 μ; dwarf male stipe 7–9×18–30 μ; antheridium 6–8×6–10 μ.

United States: Mississippi, Massachusetts; Austria, Finland, Germany, Norway, Sweden.

The species is readily identified among the nannandrous forms by its sexangular-ellipsoid oogonia and oospores. Var. angulosum is smaller and var. majus is larger than the species.

136. Oe. stellatum Wittrock.

(Pl. XLV, fig. 441.)

1870, p. 129; 1874, p. 27, Pl. 1, fig. 15; (?) Oe. spinospermum Reinsch 1875, p. 81, Pl. 15, fig. 1; Hirn 1900, p. 205, Pl. XXXIV, fig. 210.

Dioecious, nannandrous, gynandrosporous; oogonium 1–3, obovoid-globose, pore superior; oospora globose, quite filling oogonium, outer spore wall with 4–7 somewhat spirally arranged ribs, appearing definitely dentate on the margin, sometimes anastomosate; androsporangium 1–3, usually subepigynous; basal cell elongate; terminal cell slender, sub-hyaline, apically obtuse; dwarf male suberect, on suffultory cell, antheridium interior; vegetative cell 15–35×40–225 μ; oogonium 51–64×56–70 μ; oospora (with ribs) 50–58×50–58 μ; androsporangium 14–19×13–20 μ; dwarf male stipe 11–13×45–52 μ; antheridium 6–9×8–13 μ.

United States: Alabama, Florida; Africa; Brazil; Australia; Finland, Germany, Italy, Sweden; Ceylon.

This alga is often placed with the species having spirally arranged ribs on the oospora. The ribs are really irregular rows of dentate spines, and I have thus separated it in the key.

137. Oe. silvaticum Hallas.

(Pl. XLIX, fig. 472.)

1905, p. 404; fig. 9; Hirn 1906, p. 21, Pl. III, fig. 16.

Dioecious, nannandrous, gynandrosporous; oogonium 1, ellipsoid-globose, pore superior; oospora globose, not filling oogonium; suffultory cell subtumid; dwarf male suberect, on suffultory cell, antheridium exterior; vegetative cell 12–15×65–120 μ; suffultory cell 20×60 μ; oogonium 37×50 μ; oospora 28×28 μ; androsporangium 7×17 μ; dwarf male stipe 11×39 μ; antheridium 7×7 μ.

Denmark.

In general appearance this species resembles Oe. flavescens (No. 133), but differs in its smaller size and superior pore. The suffultory cells are not nearly so much enlarged relatively as in Oe. borisianum, below.
138. *Oe. borisianum* (Le Clerc) Wittrock.

(Pl. XLVIII, fig. 469.)

1874, p. 25; *Prolifera borisiana* Le Clerc 1817, p. 475, Pl. 23, fig. 6; *Oe. borisianum* Wittr. 1870, p. 132; *Vesiculifera aurea* Hassall 1842, p. 322; *V. borissii* Hassall 1845, p. 281, Pl. 52, fig. 7; *Oe. apophyllum* Al. Braun in Kuetzing 1849, p. 306, and 1853, p. 12, Pl. 35, fig. 5; *Oe. setigerum* Vaupell 1859, p. 17, Pl. 1, (2). *Androgynia mirabilis* Wood 1872, p. 196, Pl. 18, fig. 2; *Oe. birmanicum* Wittrick 1874, p. 24; Hirn 1900, p. 217, Pl. XXXVI, fig. 223; Collins 1909, p. 255; Heering 1914, p. 178, fig. 243; Tiffany 1926, p. 103, Pl. VIII, fig. 87; P. B. A. No. 517.

Dioecious, nannandrous, gynandrosporous or idioandrosporous; oogonium 1-5, obovoid or quadrangular-ellipsoid, pore superior; oospore ovoid to obovoid (often quadrangular-ovoid), not filling oogonium, spore wall smooth; androsporangium 1-7, usually in the upper part of the filament; basal cell elongate; terminal cell, often an oogonium, broadly aplicate, obtuse, or sometimes setiferous; dwarf male, somewhat curved, on suffultory cell; antheridium 2; vegetative cell 15-23×45-140µ; suffultory cell 31-38×50-92µ; oogonium (33-)40-50×55-90µ; oospore 35-46×48-60µ; androsporangium 16-19×15-23µ; dwarf male stipe 12-18×35-47µ; antheridium 7-10×11-16µ.

United States: Iowa, Massachusetts, Utah, Michigan, California, Illinois, Ohio, Pennsylvania; British Columbia; Austria, England, Denmark, Finland, France, Germany, Spain, Sweden, Latvia; Brazil, Columbia, Paraguay; Australia; India; South Africa.

(Pl. XLVIII, fig. 470.)

In Tiffany, 1929, p. 74; *Oe. borisianum* (Le Cl.) Wittr. in West 1903, p. 36.

Larger dimensions throughout; vegetative cell 17-19×130-180µ; suffultory cell 31-42×105-168µ; oogonium 53-60×67-88µ; oospore 49-58×49-58µ; antheridium 17×12-13µ.

United States: Michigan, Mississippi; England.

Oe. borisianum is one of the commonest nannandrous species. It is easily identified by the striking difference in size between the cells above the oogonia and the suffultory cells. *F. westii* is larger than the type.

139. *Oe. alternans* Wittrock and Lundell.

(Pl. XLVIII, fig. 463.)

In Wittr. 1874, p. 20; Hirn 1900, p. 251, Pl. XLII, fig. 263.

Dioecious, nannandrous, gynandrosporous; oogonium 1, subglobose, often alternating with vegetative cell, pore superior; oospore globose, filling oogonium, wall smooth, often thick; suffultory cell often sub-tumid; androsporangium 1-2, subepigynous or epigynous; basal cell elongate; terminal cell obtuse; dwarf male oblong, with an inferior constriction, on suffultory cell; vegetative cell 21-35×45-160µ; suffultory cell 26-40×52-160µ; oogonium 65-80×65-86µ; oospore 59-75×59-75µ; androsporangium 18-25×16-25µ; dwarf male 12-17×38-46µ.
Sweden.
Readily characterized by its short barrel-shaped vegetative cells, often alternating with oogonia.

140. **Oe. kitutæ** G. S. West.

1907, p. 98.
Dioecious, nannandrous; oogonium 1–2, subglobose or obovate-globose, pore superior; oospore globose, not filling oogonium, spore wall smooth; terminal cell obtuse; dwarf male elongate, slightly curved, smaller below, situated on oogonium or suffultory cell; antheridium interior (?); vegetative cell 26×130–180μ; oogonium 76–78×75–80μ; oospore 72×72μ; suffultory cell 44×132μ; dwarf male 12–13×58–66μ.

Africa.
West has left no figure for this species. It is to be compared with **Oe. borisianum** (No. 138) and **Oe. silvaticum** (No. 137).

141. **Oe. victoriense** G. S. West.

(Pl. XLIX, fig. 473.)

In Hardy 1906, p. 22; West 1909, p. 47, Pl. 6C.
Dioecious, nannandrous, gynandrosporous; oogonium 1, ellipsoid-globose to ellipsoid-doliiform, pore superior; oospore exactly globose, not filling oogonium, spore wall smooth; androsporangium 5–6 celled; dwarf male on suffultory cell, stipe curved, antheridia 2; suffultory cell broadly dilated; vegetative cell 25–29×50–87μ; oogonium 49×57μ; oospore 39×39μ; androsporangium 25–26×4–8μ; antheridium 7–8×4–5μ.

Africa (Victoria).

Resembles **Oe. crassiusculum**, below, but has single oogonia, nearly exactly globose oospores, and smaller oogonia.

142. **Oe. crassiusculum** Wittrock.

(Pl. XLIX, fig. 474.)

1870, p. 132, 1874, p. 24; Cooke 1884, p. 162, Pl. 60, fig. 5; Hirn 1900, p. 215.
Dioecious, nannandrous, gynandrosporous; oogonium 1–2, globose-ovoid or subglobose, pore superior; oospore ellipsoid-globose or globose, spore wall smooth and thickened, quite filling oogonium; androsporangium 2–5; dwarf male suberect, on or near suffultory cell, antheridium exterior, 1–2; vegetative cell 27–30×95–105μ; oogonium 54–60×60–75μ; oospore 51–57×52–63μ; androsporangium 26–28×10–18μ; dwarf male 13×60μ; antheridium 7–9×9–16μ.

United States: Ohio, Mississippi, Connecticut; Australia; England, Sweden.
142a. Var. arechavaletae (Wittrock) Hirn.

(PL L, fig. 478.)

1900, p. 216, Pl. XXXVI, fig. 222; Oe. arechavaletae Wittr. in Wittr. and Nordst. Exs. 1886 and in De Toni 1889, p. 55.

(?) Idioandrosporous; vegetative cell 21–29\times 32–110\mu m; oogonium 39–54\times 42–65\mu m; oospore 37–52\times 40–57\mu m; dwarf male 14–16\times 40–57\mu m; antheridium 9–14\times 10–16\mu m.

Uruguay.

142b. Var. idioandrosporum Nordstedt and Wittrock.

(Pl. XLIX, figs. 475 and 476.)

In Wittr. & Nordst. Exs. 1879; Oe. huntii Wood in Tilden Amer. Algae 1894; Oe. crassiusculum Wittr. in P. B. A. 1895; Oe. crassipellitum West 1899, p. 55, Pl. 394, figs. 3–5; Hirn 1900, p. 215, Pl. XXXV, fig. 220; Collins 1909, p. 255; Heering 1914, p. 178, fig. 242; Tiffany 1926, p. 103, Pl. VIII, fig. 89; P. B. A. Nos. 72 and 716.

Idioandrosporous; oogonium 1–3, globose-obovoid to globose, pore superior; oospore ellipsoid-globose, ovoid, angular-globose (rarely globose), nearly filling the oogonium, spore wall smooth, thick; androsporangium 1–4; dwarf male straight or slightly curved, on or near the suffultory cell; antheridium exterior, 1–2; vegetative cell 25–36\times 65–200\mu m; oogonium 48–59\times 57–90\mu m; oospore 42–57\times 50–66\mu m; androsporangium 30–31\times 12–21\mu m; dwarf male stipe 14–16\times 60–70\mu m; antheridium 8–10\times 10–18\mu m.

This variety is one of the commonest of the nannandrous species of the genus. In fact, in comparison to it, the type seems rare. Characterized by the thick-walled oospore, globose-obovoid oogonia, and relatively long and straight vegetative cells. It differs from the species largely in its idioandrosporous habit.

142c. Var. cataractum (Wolle) Tiffany nov. comb.

(Pl. XLIX, fig. 477.)

Oe. cataractum Wolle 1887, p. 77, Pl. 85, figs. 10–12; ibid., Hirn 1900, p. 308, Pl. XLII, fig. 264; ibid., Collins 1909, p. 266.

Oogonium 1–2, often terminal, obovoid-globose or subglobose or broadly ovate, pore superior; oospore globose or obovoid-globose, nearly filling oogonium; androsporangium 2–6; dwarf male curved, on suffultory cell or below; vegetative cell 28–38\times 42–112\mu m; oogonium 55–60\times 60–75\mu m; oospore 50–55\times 50–60\mu m; androsporangium 26–30\times 10–15\mu m; dwarf male 10\times 65\mu m.

United States: Pennsylvania, Ohio.

From Wolle's description this plant is certainly very close to Oe. crassiusculum, as suggested by Hirn (1900). Wolle's
figure does not help much and his confusing statements regarding an interior and a unicellular antheridium probably mean that he did not attach much significance to this character. The Ohio material with short vegetative cells seemed close to *Oe. crassiusculum* in other characteristics. I have therefore placed Wolle’s species as a variety of *crassiusculum*, with an emended description based on the Ohio specimens.

143. *Oe. multisporum* Wood.

(Pl. XLVI, figs. 450 and 451.)

1869, p. 141; *Androgynia multispora* Wood 1872, p. 196, Pl. 17, fig. 3; Hirn 1900, p. 232, Pl. XXXIX, fig. 230; Collins 1909, p. 257; Fritsch and Rich 1913, p. 76, fig. 1 A; P. B. A. No. 1784.

Dioecious, nannandrous; oogonium 1-3, subovoid or subglobose, pore superior; oospore globose, nearly filling oogonium, spore wall smooth; dwarf male a little curved or nearly erect, near or on oogonium, antheridium exterior, 1-4; vegetative cell 10-15×10-30μ; oogonium 24-35×27-33μ; oospore 27-30×24-30μ; dwarf male stipe 10-11×26-30μ; antheridium 7-9×7-9μ.

143a. Var. *magnum* Ackley.

(Pl. XLVI, fig. 452.)

1929, p. 305, Pl. XXXVI, figs. 20-22.

Larger than the species; idioandrosporous; oogonium 1, subglobose, pore supramedian (rarely median); androsporangium 1-2; dwarf male on or near oogonium or scattered; vegetative cell 14-18×30-90μ; suffultory cell 17-21×28-90μ; oogonium 40-43×33-38μ; oospore 38-41×32-36μ; androsporangium 17-18×16-22μ; dwarf male stipe 12-14 (-20)×24-26 (-29)μ; antheridium 8-10 (-12)×8-10μ.

United States: Michigan (Muskegon Lake).

It is sometimes difficult to decipher the pore in the species proper. The plant is usually irregularly formed with numerous and often scattered dwarf males and frequently gives the appearance of not being mature. The variety is larger.

144. *Oe. irregulare* Wittrock.

(Pl. XLVI, fig. 447.)

1870, p. 128; 1871, p. 22; Hirn 1900, p. 202, Pl. XXXIII, fig. 207.

Dioecious, nannandrous; oogonium 1, globose or rarely subdepressed-globose, pore superior; oospore globose, completing oogonium, spore wall smooth; dwarf male erect, on or near oogonium, antheridium exterior, 1-4; vegetative cell 15-20×40-80μ; oogonium 37-45×35-47μ; oospore 36-12×34-41μ; dwarf male stipe 12-15×20-24μ; antheridium 10-12×6-8μ.

United States: Illinois, Ohio, Florida, Michigan; British Columbia; Denmark, Sweden.

(Pl. XLVI, figs. 448 and 449.)

1906, p. 17, Pl. III, fig. 15; *Oe. condensatum* Hallas 1905, p. 400, fig. 4.

Idioandrosporous; oogonium rarely in two's; oosporangium 1-13; vegetative cell 14-18×20-80μ; oogonium 35-46×28-38μ; oosporangium 32-44×25-36μ; androsporangium 12-14×7-21μ; dwarf male stipe 11-13×21-24μ; antheridium 9-10×7-12μ.

United States: Michigan; Denmark.

The species is characterized by erect dwarf males, globose oospores, and smooth spore walls. It is larger than *Oe. multisporum* (No. 143) and there is little tendency toward a cluster of dwarf males. The var. *condensatum* has depressed-globose oospores and the dwarf males sometimes appear more or less in clusters. In superficial appearance there is considerable resemblance between *Oe. multisporum* var. *magnum* (No. 143a) and *Oe. irregularare* var. *condensatum*.

145. *Oe. donnellii* Wolle; Hirn.

(Pl. XLV, fig. 437.)

Wolle 1880, p. 48; Wolle 1887, p. 55, Pl. 84, figs. 3-6; Hirn 1900, p. 206, Pl. XXXIV, fig. 211.

Dioecious, nannandrous, idioandrosporous; oogonium 1 (rarely 2), obovoid-globose, pore superior; oosporangium globose, not filling oogonium, outer layer of spore wall echinate, spirals 5-7, anastomosate; androsporangium 4-10; dwarf male a little curved, on suffultory cell or rarely on oogonium, antheridium exterior, 1-2-7; vegetative cell 41-59×54-175μ; oogonium 63-78×70-93μ; oosporangium 60-70×60-70μ; androsporangium 40-45×10-12μ; dwarf male stipe 16-21×63-74μ; antheridium 14-15×8-22μ.

United States: Florida.

(Pl. XLV, figs. 438 and 439.)

Smaller; spines a little smaller; vegetative cell (32-)35-45×70-135μ; oogonium 63-73×68-75μ; oosporangium 63-73×68-75μ; oosporangium (with spines) 55-66×56-68μ; androsporangium 30-38×11-26μ; dwarf male stipe 11-15×50-65μ; antheridium 9-10×20-23μ.

Brazil, Paraguay.

The species is characterized by the echinate oospore wall, the spines being arranged spirally. The variety *wittrockianum* is very similar to the type, having slightly more slender filaments and smaller spines.
146. **Oe. armigerum** Hirn.

(Pl. XLIII, fig. 415.)

1900, p. 203, Pl. XXXIII, fig. 208; (?) *Oe. echinatum* Wood in Wolfe 1887, p. 86, Pl. 85, figs. 13–16.

 Dioecious, nannandrous; oogonium 1, subglobose, pore superior; oospore globose, nearly filling oogonium, outer layer of spore wall echinate; dwarf male curved, on suffultory cell, stipe sometimes 2–4 celled; antheridium exterior, 1–2; vegetative cell 9–11×36–100μ; oogonium 29–33×32–35μ; oospore 26–29×26–29μ; dwarf male, lower cell 7–8×20–24μ, upper cell 4–6×21–30μ; antheridium 5–6×7–8μ.

Brazil.

Characterized by its echinate oospore wall with the spines not spirally arranged. It is smaller than either *Oe. echinatum* (No. 147) or *Oe. lindmanianum* (No. 148).

147. **Oe. echinatum** (Wood) Wittrock.

(Pl. XLV, fig. 436.)

Androgynia echinata Wood 1872, p. 198, Pl. 18, fig. 3; *Oe. echinatum* Wittr. 1878, p. 137; Hirn 1900, p. 204.

 Dioecious, nannandrous; oogonium (?) 1, globose, usually depressed, pore superior; oospore globose, distending oogonium, outer layer of spore wall echinate; dwarf male suberect, near oogonium, (?) antheridium exterior, 1; vegetative cell 8–13×50–138μ; oogonium 35–36×35–36μ; oospore (without echinations) 25–20×25–26μ.

United States: Pennsylvania.

Wood’s figure of the echinate oospore is the only record of this species, other than the description above.

148. **Oe. lindmanianum** Wittrock.

(Pl. XLV, figs. 434 and 435.)

 Dioecious, nannandrous, idioandrosporous; oogonium 1, obovoid-globose or subglobose, pore superior; oospore globose or subglobose, quite filling oogonium; outer spore wall echinate; androsporangium to 7-serial; dwarf male a little curved, on suffultory cell, antheridium exterior, 1; vegetative cell 22–30×40–120μ; oogonium 46–57×46–57μ; oospore (with spines) 45–56×45–54μ; androsporangium 22–28×17–27μ; dwarf male stipe 12–15×38–46μ; antheridium 6–8×11–16μ.

Paraguay.

Cf. *Oe. armigerum* (No. 146).

149. **Oe. cyathigerum** Wittrock.

(Pl. LI, figs. 484 and 485.)

1870, p. 131, Pl. 1, figs. 6 and 7; *Oe. cyathigerum* Wittr. var. *rumelica* Istvanffi 1890, p. 77; *Oe. ornatum* Hirn 1896, p. 3, fig. (p. 4); Hirn 1900, p. 232, Pl. XL11, figs. 265 and 266; Heering 1914, p. 184, fig. 256; Tiffany 1926, p. 103, Pl. IX, figs. 104 and 105.

 Dioecious, nannandrous, idioandrosporous; oogonium 1–3, subovoid or quadrangular-ellipsoid, pore superior; oospore same form as oogonium,
filling it, outer layer of spore wall smooth, median layer with 16–25 longitudinal, continuous, rarely anastomosing, often curved, ridges—inner layer smooth; basal cell elongate; terminal cell, often an oogonium, obtuse; dwarf male goblet-shaped, curved, on the suffultory cell or oogonium; antheridium interior; vegetative cell 21–30×40–300μ; suffultory cell 42–48×75–110μ; oogonium 57–66×70–100μ; oospore 51–62×60–75μ; androsporangium 23–30×12–30μ; dwarf male cell 12–15×50–58μ.

United States: Iowa, Illinois, Ohio, Mississippi, Michigan; Denmark, France, Germany, Sweden, Rumania, Switzerland, England.

149a. Form americanum Wolle.
1887, p. 77, Pl. 81, figs. 20–22; Hirn 1900, p. 256.
Smaller; dwarf male on oogonium; vegetative cell 17–21×22–62μ; oogonium 45–50×55–63μ; oospore 39–40×44–46μ; dwarf male 12–15×50–54μ.

United States: Pennsylvania.

149b. Form ornatum (Wittrock) Hirn.
(Pl. LI, figs. 488–490.)
1900, p. 254, Pl. XLIII, fig. 267; Oe. cyathigerum Witt. var. ornatum Witt. 1878, p. 134.
Mexico (Vera Cruz).

149c. Form perfectum Hirn.
(Pl. LI, figs. 486 and 487.)
1900, p. 254, Pl. XLIII, fig. 268; Oe. cyathigerum Witt. in Borge 1896, p. 5.

United States: Mississippi, Ohio; Brazil; Australia; India.

149d. Var. ellipticum Magnus and Wille.
(Pl. LI, fig. 493.)
In Wille 1884, p. 40, Pl. 2, fig. 67; Hirn 1900, p. 255, Pl. XLIV, fig. 271; Fritsch and Rich 1924, p. 320, fig. 4 A–C.
Oospore frequently not filling oogonium, quadrangular-ellipsoid or nearly ellipsoid or rarely subglobose; vegetative cell 19–30×30–120μ; suffultory cell 26–43×40–125μ; oogonium 50–63×68–94μ; oospore 48–57×45–66μ; dwarf male 15–18×43–55μ.

United States: Ohio; Uruguay, Brazil; South Africa.
149e. Var. *hormosporum* (West) Hirn.

(Pl. LII, figs. 491 and 492.)

1900, p. 255, Pl. XLIV, figs. 269 and 270; *Oe. hormosporum* West 1897, p. 5.

Oogonium and oospore smaller; oogonia 2–10 (rarely 1), androsporangium up to 15-seriate; vegetative cell 22–30×76–180µ; suffultory cell 35–45×52–112µ; oogonium 48–57×56–95µ; oospore 46–55×53–65µ; androsporangium 18–22×12–24µ; dwarf male 9–13×47–54µ.

Africa.

The species is readily identified among the nannandrous group by the irregular longitudinal ridges appearing on the median oospore wall. The suffultory cells are very much enlarged. The varieties and forms are separated largely on the basis of size. It differs from *Oe. wolleanum* (No. 150) in its smaller number of ribs. Fritsch and Rich (1924) record a form of *Oe. cyathigerum* with suffultory cell not always swollen and with frequently globose oospores. This is perhaps merely a slight variation of var. *ellipticum*.

150. *Oe. wolleanum* Wittrock.

(Pl. L, figs. 479 and 480.)

1878, p. 137; Wolle 1887, p. 82, Pl. 80, figs. 4 and 5; *Oe. aphophysatum* A. Br. in Rabenh. Alg. Sach. No. 291, 1833; *Oe. concatenatum* (Hass.) Kuetz. *f. luxuriosus* Breb. in Roumeg. Alg. Exs. Nos. 683 and 1062; Hirn 1900, p. 220, Pl. XXXVII, fig. 226.

Dioecious, nannandrous, gynandrosporous or idioandrosporous; oogonium 1–4, subobovoid or quadrangular-ellipsoid, pore superior, wall with raised longitudinal lines on the inner surface; oospore of same form as oogonium, quite filling it, outer layer of spore wall with 25–35 longitudinal ribs, rarely anastomosaic, inner layer smooth; androsporangium 1–3, often subepigynous or scattered in the upper part of the filament; basal cell elongate; terminal cell, sometimes oogonium, short-acute or acuminate; dwarf male on suffultory cell, stipe slightly curved; antheridium exterior, 1–3; vegetative cell 21–30×65–235µ; suffultory cell 45–56×68–110µ; oogonium 58–68×69–89µ; oospore 56–66×65–83µ; androsporangium 21–30×18–25µ; dwarf male stipe 15–24×54–60µ; antheridium 9–14×7–11µ.

United States: Massachusetts, Connecticut, New Jersey, Iowa, Pennsylvania, Minnesota, Florida, Illinois; Brazil; India; France, Latvia, Germany; Australia; Greenland.

(Pl. L, fig. 481.)

1900, p. 222, Pl. XXXVII, fig. 228.

United States: Minnesota.
150b. Form **insigne** (Nordstedt) Hirn.

(Pl. L, figs. 482 and 483.)

1900, p. 222, Pl. XXXVII, fig. 227; *Oe. wolfeianum* Wittr. var. **insigne** Nordst. in Wittr. and Nordst. Alg. Exs. No. 207, 1879.

Stouter; ribs on the oogonium and oospore 35–40; oogonium 1–10; androsporangium to 10-seriate; antheridium 1–4; vegetative cell 18–36×53–250μ; suffultory cell 57–66×100–150μ; oogonium 67–80×78–92μ; oospore 64–76×74–90μ; androsporangium 19–30×18–30μ; dwarf male stipe 18–24×54–68μ; antheridium 12–14×10–12μ.

United States: New Jersey; Sweden.

This species is characterized by regular, longitudinal ribs on the outer layer of the oospore wall. It differs from *Oe. cyathigerum* (No. 149) in this respect and also in having a larger number of ribs. Var. **concinnum** has crenulate ribs, and f. **insigne** differs in its slightly larger size and in the larger number of ribs on the oospore.

151. *Oe. concatenatum* (Hassall) Wittrock.

(Pl. LII, fig. 494.)

Vesiculifera concatenata Hass. 1845, p. 201, Pl. 51, fig. 3; *Oe. concatenatum* Wittr. 1874, p. 25; *Oe. apophysatum* Al. Br. in Pringsh. 1888, p. 71, Pl. 5, fig. 9; *Oe. apophysatum* Pringsh. in Wittr. 1872a, p. 22; *Oe. concatenatum* (Hass.) Wittr. var. *lagenarioides* Filarszky 1899, p. 65, Pl. 3; Hirn 1900, p. 223, Pl. XXXVII, fig. 230; Heering 1914, p. 180, fig. 215; Tiffany 1926, p. 104, Pl. VIII, fig. 92.

 Dioecious, nannandrous, gynandrosporous; oogonium 1–6, subovoid or quadrangular-ellipsoid, pore superior; oospore of same form as oogonium, nearly filling it. Outer layer of spore wall smooth, middle layer with pits, more or less distinctly arranged in 30–35 longitudinal series, inner wall smooth; suffultory cell swollen; androsporangium 1–4; basal cell elongate; terminal cell obtuse; dwarf male curved, on suffultory cell; antheridium exterior, 1–4; vegetative cell 25–40×75–400μ; suffultory cell 50–62×88–155μ; oogonium 63–83×76–105μ; oospore 60–75×67–95μ; androsporangium 25–28×15–36μ; dwarf male stipe 17–25×30–75μ; antheridium 13–15×12–25μ.

United States: Illinois, Iowa, Massachusetts, New Jersey, Pennsylvania, New York, Michigan; Austria, England, Finland, Germany, Spain. Hungary, Sweden, Denmark; Alaska; British Columbia.

151a. Form **hutchinsiae** (Wittrock) Hirn.

(Pl. LII, fig. 495.)

1900, p. 225, Pl. XXXVIII, fig. 231; *Oe. hutchinsiae* Wittr. 1874, p. 42; Heering 1914, p. 180; Tiffany 1926, p. 104.

Form a little smaller, oospore more nearly globose, the pits of the middle layer of spore wall not arranged in evident longitudinal series; vegetative cells 20–35×75–210μ; suffultory cell 37–50×65–200μ; oogonium 52–75×67–95μ; oospore 50–75×55–77μ.

United States: Iowa; England, France, Spain.

(Pl. LIII, figs. 496 and 497.)

1925, p. 72, fig. 1.

Oospore quadrangular-ellipsoid, membrane thick, middle layer of
spore wall with its pits in transverse and longitudinal rows (about
15 transverse rows); idioandrosorous; vegetative cell 32–36×75–400μ;
suffultory cell 50×88–155μ; oogonium 56×76–105μ; oospore 48–56×
67–95μ; androsporangium 27×15–36μ.

England.

Oe. concatenatum is unique among the poriferous, nannandrous
forms of the genus for its prominently pitted oospore. F. *hutchinsiae*
and var. *rectangulare* are separable largely on the
arrangement of the pits on the median layer of the oospore.

152. *Oe. huntii* Wood.

(Pl. XLVIII, figs. 465–468.)

1869, p. 333; Wittrock 1878, p. 136; *Androgyenia huntii* Wood 1872, p.
197, Pl. 17, fig. 2; Hirn 1900, p. 208, Pl. XXXIV, fig. 213; Collins 1908, p.
57; P. B. A. No. 1471.

Dioecious, nannandrous; oogonium usually 1, subglobe to sub-
bobovoid-globe (rarely subhexagonal), pore inferior; oospore globe to
not filling oogonium, outer spore wall with four raised spiral ribs; basal
cell elongate; terminal cells tapering, setiferous (consisting of 10 or
more superimposed long cylindrical cells, each smaller in diameter
than the one below); dwarf male nearly straight, on suffultory cell,
antheridium exterior, 1–2 (?); vegetative cell 15–25×36–82μ; oogonium
50–60×52–60μ; oospore 38–42×38–42μ; dwarf male stipe 11×52μ;
antheridium 10×30μ.

United States: Massachusetts, Pennsylvania.

Fruiting material showing the 4 spiral ribs has been seen only
by Wood. Collins (1908) records the species showing the peculiar
tapering setiferous terminal cells (see description above). This is the only species in the nannandrous group
having ribbed oospores and an inferior pore.

153. *Oe. hispidum* Nordstedt.

(Pl. XLV, fig. 440.)

In Wittr. 1870, p. 128, and 1874, p. 28; Hirn 1900, p. 210, Pl. XXXV, fig. 215.

Dioecious, nannandrous, gymandrosorous; oogonium 1, terminal,
subellipsoid or ellipsoid-globe, pore inferior; oospore globe to
globe-ellipsoid, not filling oogonium or rarely enlarging it, outer
spore wall echinate; androsporangia 2; terminal cell obtuse; dwarf
male a little curved, on suffultory cell, antheridium exterior, 1; vegetative
cell 9–14×36–130μ; oogonium 35–44×42–56μ; oospore (with spines)
32–39×32–40μ; androsporangium 10–12×6–8μ; dwarf male stipe
7–8×17–18μ; antheridium 5–6×7–9μ.

France, Sweden.
The only nannandrous species with echinate oospores and inferior position of the oogonial pore.

154. *Oe. cleveanum* Wittrock.

(Pl. XLVI, figs. 443 and 444.)

1870, p. 128; 1872a, p. 22; 1874, p. 28; *Oe. echinospernum* Al. Br. in Pringsh. 1875, p. 70, Pl. 5, fig. 7; *Oe. berolinense* Witt. 1872, p. 6; *Oe. cleveanum* Witt. var. *arvensis* Istvannfi 1887, p. 242; Hirn 1900, p. 209, Pl. XXXV, fig. 214; *Oe. cleveanum* Witt. f. *exoticum* Hirn 1900, p. 210 (not Hirn 1906, p. 33).

Dioecious, nannandrous, gynandrosporous; oogonium 1, subobovoid-globose or subglobose, pore inferior; oospore globose, filling oogonium, outer layer of spore wall dentate, teeth in 4-6 spiral rows, anastomosate; suffultory cell sometimes tumid; androsporangium 1-7; dwarf male a little curved, on suffultory cell, antheridium exterior, 1; vegetative cell (14-) 18-23×40-110μ; oogonium 45-60×48-63μ; oospore (with teeth) 44-57×45-59μ; androsporangium 18-22×9-18μ; dwarf male stipe 10-11×29-32μ; antheridium 5-9×12-16μ.

England, France, Germany, Hungary, Sweden; Brazil.

154a. Form *exoticum* Hirn.

1906, p. 33, (not 1900, p. 210); Schmidle 1901, p. 344.

Oogonium 1-3; vegetative cell 14-25×44-200μ; oogonium 39-46×40-47μ; oospore (with teeth) 38-44×38-44μ; dwarf male stipe 10-11×27-30μ; antheridium 6-7×11-13μ.

Caroline Islands.

Oe. cleveanum is characterized by the inferior position of the oogonial pore and the dentate oospore, the teeth being arranged somewhat spirally. The form *exoticum* as described by Hirn (1900) is so nearly identical with the species as to be untenable even as a form. The specimens from the Caroline Islands referred to *f. exoticum* by Schmidle (1901) and Hirn (1906) have distinctly smaller oogonia and oospores and are thus perfectly tenable.

155. *Oe. elegans* West and West.

(Pl. LIII, figs. 498 and 499.)

1902, p. 128, Pl. 17, figs. 6-7; Hirn 1906, p. 13, Pl. IV, fig. 22.

Dioecious, nannandrous; oogonium 1, depressed-globose, operculate, division median; oospore depressed-globose, quite filling oogonium, spore wall smooth; dwarf male small, unicellular, on oogonium; vegetative cell densely and minutely granulate, the deposits spirally arranged; vegetative cell 6-9×25-85μ; oogonium 27-31×25-26μ; oospore 25-28×18-19μ; dwarf male 5-6×8-9μ.

Ceylon.

The only nannandrous member of the genus with granulate vegetative cells. Cf. *Oe. minus* (No. 84).
156. Oe. rigidium Hirn.
(Pl. LIII, figs. 506 and 507.)
1900, p. 237, Pl. XL, fig. 244.

 Dioecious, nannandrous, gynandrosporous; oogonium 1, obovoid-globose, opérculate, division superior; oospore globose, nearly filling oogonium, spore wall smooth, often thick; androsporangium 1–2, epigynous, subepigynous or hypogynous; vegetative cell broadly capitellate; terminal cell obtuse; dwarf male curved, on oogonium, antheridium exterior, 1–?; vegetative cell 12–14×38–58μ; oogonium 35–39 (-42)×38–45μ; oospore (30–) 34–38×34–38μ; androsporangium 10–11×11–12μ; dwarf male stipe 7–9×18–22μ; antheridium 5–7×6–7μ.

Brazil; South Africa.

The only nannandrous species having the combination of superior position of the oogonial operculum, and capitellate vegetative cells.

157. Oe. bengalense Hirn.
(Pl. LIII, figs. 504 and 505.)
1900, p. 268, Pl. XLVI, fig. 287.

 Dioecious, nannandrous, idioandrosporous; oogonium 1–4, sub-depressed-globose to ovoid, opérculate, division median, rather wide; oospore subdepressed-globose or globose; quite filling oogonium, spore wall smooth; androsporangium 1–4; vegetative cell capitellate; basal cell elongate; terminal cell, not rarely the oogonium, apically obtuse; dwarf male obovoid, unicellular, on oogonium; vegetative cell 14-19× 45–110μ; oogonium 46–54×44–54μ; oospore 43–48×43–48μ; androsporangium 14–15×13–18μ; dwarf male 12–13×16–18μ.

India: Bengal.

Cf. Oe. indicum, below.

158. Oe. indicum Hirn.
(Pl. LIV, fig. 509.)
1900, p. 269, Pl. XLVI, fig. 288.

 Dioecious, nannandrous, gynandrosporous; oogonium 1–2, depressed-globose or depressed obovoid-globose, opérculate, division median, narrow but distinct; oospore depressed-globose, completing oogonium, spore wall smooth; androsporangium 1–2–?, subepigynous; vegetative cell broadly capitellate; basal cell elongate; dwarf male obovoid, unicellular, on oogonium; vegetative cell 20–25×50–110μ; oogonium 57–64×48–53μ; oospore 55–61×43–50μ; androsporangium 19–20× 8–10μ; dwarf male 11–14×18μ.

India.

This species together with Oe. bengalense above combine the characters of capitellate vegetative cells and median position of a narrow operculum. Oe. indicum is the larger of the two. Cf. Oe. areschougii (No. 160), Oe. brasiliense (No. 159), and Oe. contertium (No. 161).
159. **Oe. brasiliense** Borge.

(Pl. LIV, fig. 508.)

1899, p. 4, Pl. 1, fig. 1; Hirn 1900, p. 272, Pl. XLVI, fig. 292.

Dioecious, nannandrous, idioandrosporous; oogonium 1–3, subdepressed-globose or subpyriform-globose, operculate, division median, broad; oospore subdepressed-globose, not quite filling oogonium, spore wall smooth; androsporangium to 5-seriate; vegetative cell capitellate; dwarf male obovoid, unicellular, on oogonium; vegetative cell 10–22×35–95μ; oogonium 53–63×52–59μ; oospore 48–53×45–50μ; androsporangium 15–16×11–14μ; dwarf male 10–12×14–19μ.

Brazil.

Characterized by its broad operculum and capitellate vegetative cells.

160. **Oe. areschougii** Wittrock.

(Pl. LIII, fig. 500.)

1870, p. 122, Pl. 1, figs. 1 and 2; 1874, p. 19, Pl. 1, figs. 10 and 11; Hirn 1900, p. 270, Pl. XLVI, fig. 280.

Dioecious, nannandrous, gynandrosporous; oogonium 1–6, subdepressed- or depressed pyriform-globose, operculate, division median, broad; oospore globose, rarely subdepressed-globose, not completing oogonium longitudinally, spore wall smooth; androsporangium 1–6, subepigynous or hypogynous or rarely scattered; vegetative cell capitellate; basal cell elongate; terminal cell, usually the oogonium, apically obtuse; dwarf male obovoid, unicellular, on oogonium; vegetative cell 8–13×35–75μ; oogonium 34–39×36–40μ; oospore 22–26×22–25μ; androsporangium 9–11×10–12μ; antheridium 6–7×13–15μ.

United States: New Jersey; Brazil; Finland, Germany, Sweden, Denmark; Greenland; Siberia.

(Pl. LIII, fig. 501.)

1927, p. 205, Pl. IX, figs. 8 and 9.

Idioandrosporous; oogonium smaller; androsporangium to 11-seriate; vegetative cell 8–12×40–80μ; oogonium 29–36×26–40μ; oospore 23–26×22–26μ; androsporangium 7–9×7–11μ.

160b. Form *robustum* Hirn.

(Pl. LIII, figs. 502 and 503.)

1900, p. 271, Pl. XLVI, fig. 290; (?) *Oe. obtuncatum* var. *oblatum* Tilden, Amer. Alge No. 3, 1894; *Oe. areschougii* var. *major* Collins 1912, p. 88.

Idioandrosporous; oospore larger; oogonium to 8-seriate; vegetative cell 12–17×36–120μ; oogonium 36–40×36–53μ; oospore 30–32×27–31μ; androsporangium 9–12×10–13μ; dwarf male 6–8×14–15μ.

England; (?) Minnesota (U. S.).
This species is characterized by its capitellate vegetative cells, wide operculum, small size, and small oospores in comparison with oogonia. Var. americanum differs from the species in being idioandrosporous; f. robustum in addition has larger oospores.

161. **Oe. confertum** Hirn.

(Pl. LIV, fig. 510.)

1900, p. 272, Pl. XLVI, fig. 291.

 Dioecious, nannandrous, (?) idioandrosporous; oogonium 1–4, depressed-globose or depressed pyriform, operculate, division median, wide; oospore globose or subdepressed-globose, not filling oogonium longitudinally, spore wall smooth; vegetative cell capitellate; dwarf male obovoid, on oogonium; vegetative cell 19–26×66–105μ; oogonium 56–63×44–56μ; oospore 42–48×40–44μ; dwarf male 10–12×13–16μ.

Australia.

To be compared with Oe. areschougii (No. 160), which is smaller and has less depressed oogonia. It is also similar in appearance to the larger Oe. perspicuum, below.

162. **Oe. perspicuum** Hirn.

(Pl. LIV, fig. 511.)

1900, p. 273, Pl. XLVI, fig. 293; Oe. dioicum Carter in West and West 1901, p. 175, Pl. IV, fig. 42.

 Dioecious, nannandrous; oogonium 1–8, depressed or subdepressed-globose, operculate, division median, broad; oospore globose or sub-globose, not filling oogonium longitudinally, spore wall smooth; dwarf male obovoid, unicellular, on oogonium; vegetative cell (30–) 35–43×95–175μ; oogonium 89–100×64–104μ; oospore 55–70×52–70μ; dwarf male 15–18×19–22μ.

Australia; Siam.

Cf. Oe. confertum, above.

163. **Oe. clavatum** Hallas.

(Pl. LIV, figs. 512 and 513.)

1905, p. 399, fig. 3; Hirn 1906, p. 11, Pl. IV, fig. 23.

 Dioecious, nannandrous, gynandrosporous; oogonium 1–3, sub-pyriform to subdepressed-globose, operculate, division a little above medium; oospore subdepressed, depressed-globose, or globose, quite filling oogonium (rarely not), spore wall smooth; androsporangium 1–2, scattered; dwarf male obovoid, unicellular, on oogonium; vegetative cell capitellate or nearly clavate; basal cell subhemispherical; vegetative cell 2–9×5–80μ; oogonium 14–26×16–21μ; oospore 12–21×12–14μ; androsporangium 4–6×5–7μ; dwarf male 6×14–15μ.

United States: New York (Long Island); Denmark.

One of the smallest nannandrous species with capitellate or nearly clavate vegetative cells.
164. **Oe. oelandicum** Wittrock; Hirn.

(P. LVI, fig. 539.)

Wittrock 1874, p. 17; Hirn 1900, p. 273, Pl. XLVII, fig. 297.

Dioecious, nannandrous, gynandrosporous; oogonium 1–7, depressed-globose, with 12–16 longitudinal ridges, operculate, division supramedian, rather broad; oospore depressed-globose, nearly filling oogonium, spore wall smooth; androsporangium to 6-seriate; vegetative cell capitellate; terminal cell apically obtuse; dwarf male obovoid, unicellular, on oogonium; vegetative cell 10–15×25–125μ; oogonium 31–40×25–32μ; oospore 25–36×23–30μ; androsporangium 7–12×10–18μ; dwarf male 7–8×8–15μ.

United States: Michigan; British Columbia; Sweden.

164a. **Form minus** Borge.

(P. LVI, fig. 540.)

1911, p. 205, Pl. 2, fig. 10.

Smaller; vegetative cell 9–10×36–50μ; oogonium 27–30×19–25μ; dwarf male 6–7×11–12μ.

The species is characterized by its longitudinally ridged oogonia, supramedian operculum, and capitellate vegetative cells. It is smaller than the similarly appearing, larger **Oe. megaporum**, below. **F. minus** has shorter oogonia.

165. **Oe. megaporum** Wittrock.

(P. LVI, fig. 543.)

Dioecious, nannandrous, idioandrosporous; oogonium 1–6, broadly pyriform, with 12–16 rounded longitudinal ridges, operculate, division supramedian and wide; oospore subdepressed-globose, not filling oogonium, spore wall smooth; androsporangium to 4-seriate; vegetative cell capitellate, basal cell elongate; terminal cell apically obtuse; dwarf male unicellular, broadly obovoid, on oogonium; vegetative cell 13–17×40–100μ; oogonium 37–42×40–45μ; oospore 31–35 (–38)×27–30μ; androsporangium 10–11×12–22μ; dwarf male 8–12×13–16μ.

United States: Michigan; Finland, Germany, Sweden.

Cf. **Oe. oelandicum** (No. 164).

166. **Oe. bahusiense** Nordstedt.

(P. LV, figs. 530 and 531.)

1877, p. 26, Pl. 3, figs. 7–11; Hirn 1900, p. 279, Pl. XLVIII, fig. 307.

Dioecious, nannandrous, gynandrosporous; oogonium 1 (rarely 2), depressed pyriform, with 9–12 longitudinal ridges appearing as a median whorl, operculate, division inframedian; oospore depressed-obovoid or depressed-globose, nearly filling oogonium, spore wall smooth; androsporangium to 4-seriate, scattered, often terminal; vegetative cell
capitellate; dwarf male unicellular, obovoid, small, on oogonium; vegetative cell 12-15×25-60μ; oogonium 30-36×22-29μ; oospore 23-28×20-24μ; androsporangium 10-13×5-7μ; dwarf male 5-6×8-9μ.

Sweden.

This species combines the inframedian position of the operculum, ridged oogonium, capitellate vegetative cell, and non-tumid suffultory cell. It differs from *Oe. platygynum*, below, in its larger dimensions.

167. *Oe. platygynum* Wittrock.

(P.LVI, fig. 544.)

1872, p. 1; 1874, p. 17, Pl. 1, figs. 5-9; *Oe. platygynum* Wittr. *f. major* West 1891, p. 109, Pl. 18, fig. 1; Hirn 1900, p. 276, Pl. XLVII, figs. 301 and 302; P. B. A. No. 1677.

Dioecious, nannandrous, gynandrosporous and idioandrosporous; oogonium 1-2, depressed obovoid, with 7-12 (more often 8) rounded projections arranged in a whorl around the middle, operculate, division inframedian; oospore depressed- or subdepressed-globose, not quite filling oogonium, spore wall smooth; suffultory cell sometimes tumid; androsporangium 1-3; vegetative cell evidently capitellate; terminal cell apically obtuse; dwarf male unicellular, obovoid, small, on oogonium; vegetative cell 5-11×14-50μ; oogonium 21-30×16-24μ; oospore 17-24×13-20μ; androsporangium 6-8×7-8μ; dwarf male 4-5×8-10μ.

United States: New Jersey, Pennsylvania, Florida, Minnesota; Brazil; England, Denmark, Finland, Germany, Ireland, Norway, Latvia, Sweden; Africa; Ceylon.

167a. Form *obtusum* Hirn.

(P.LVI, fig. 545.)

1900, p. 277, Pl. XLVII, fig. 303.

Idioandrosporous, oogonium a little less depressed, processes obtusely rounded; vegetative cell 6-10×14-50μ; oogonium 22-26×18-24μ; oospore 17-19×14-15μ; androsporangium 6-8×8-10μ; dwarf male 4-5×7-9μ.

(P.LVI, fig. 546.)

1888, p. 12, Pl. 1, figs. 16 and 17; Hirn 1900, p. 278, Pl. XLVII, fig. 305.

Oogonium to 5-seriate, projections more truncately rounded; suffultory cell enlarged; vegetative cell 8×48μ; suffultory cell 12-14×25-40μ; oogonium 28-32×21-26μ; oospore 22×20μ; ? androsporangium 15-17×12μ.

New Zealand.
167c. Var. novae zelandiae Hirn.

(Pl. LVI, fig. 547.)

1900, p. 278, Pl. XLVII, fig. 304; Oe. platygynum Wittr. forma Nordst. 1888, p. 12, Pl. 1, figs. 14 and 15.

Gynandrosporous; oogonium subpyriform, projections obtuse or truncate-ly rounded; vegetative cells very broadly capillate. 6–9×20–50μ; oogonium 24–28×22–26μ; oospore 20–22×18–20μ; androsporangium 7–8×7–11μ.

New Zealand.

Cf. Oe. bahusiense (No. 166).

168. Oe. longicolle Nordstedt.

(Pl. LV, figs. 516 and 517.)

1878, p. 20, Pl. 2, figs. 11 and 12; Hirn 1900, p. 263, Pl. XLV, fig. 278.

Dioecious, nannandrous; oogonium 1–7, pyriform, often elongated longitudinally, operculate, division median and narrow; oospore sub-depressed-globose or subglobose, inflating oogonium medianly, not filling it longitudinally, spore wall smooth; basal cell subhemispherical; dwarf male unicellular, obovoid, minute, on oogonium; vegetative cell 4–6×16–45μ; oogonium 13–16×16–32μ; oospore 12–15×10–16μ; dwarf male 2×4μ; basal cell 14×6μ.

Australia; Ceylon.

168a. Var. senegalense Nordstedt.

(Pl. LV, figs. 518 and 519.)

1880, p. 13, Pl. 1, fig. 23; (?) Oe. delicatum Kuetz. in Wolle 1887, Pl. 81, figs. 12 and 13; Hirn 1900, p. 264, Pl. XLV, figs. 279 and 280. Oe. longicolle Nordst. var. senegalense Nordst. f. afghanicum Schaarsch. 1884, p. 249, Pl. 5, fig. 26, and in Hirn 1900, p. 264, Pl. XLV, fig. 281.

Larger; vegetative cell 5–8×12–10μ; oogonium 16–20×14–24μ; oospore 14–20×11–17μ; basal cell 13–14×5–7μ.

Africa; Brazil; Ceylon; Australia; Afghanistan; Burma.

The species is characterized by its small size, subhemispherical basal cell, nannandrous habit, and smooth oogonium. It is the smallest of similar species that follow: Oe. rothii (No. 169) and Oe. decipiens (No. 171).

169. Oe. rothii (Le Clerc) Pringsheim.

(Pl. LV, fig. 526.)

(?) Prolifera rothii Le Clerc 1817, p. 476, Pl. 23, fig. 8; Oe. rothii Pringsh. 1558, p. 60, Pl. 5, fig. 4; Oe. cryptoporum Wittr. var. vulgare Wittr. f. abbreviata Gutw. 1897, p. 126; Oe. cryptoporum Wittr. var. subdepressum Wittr. in Wittr. and Nordst. Alg. Exs. No. 152, 1878; Hirn 1900, p. 265, Pl. XLV, fig. 282; Collins, 1909, p. 262; P. B. A. No. 520.

Dioecious, nannandrous, gynandrosporous; oogonium 1–3, sub-depressed-globose, operculate, division median, narrow; oospore depressed-globose, almost filling oogonium, spore wall smooth; androsporangium 1–4; subhypogynous, hypogynous, subepigynous, or scattered; vegetative cell 6–10×20–76μ; oogonium 20–27×16–27μ; oospore 17–25×14–20μ; androsporangium 6–8×5–10μ; dwarf male 4×11–12μ.
United States: Massachusetts; Austria, Denmark, England, Germany, Norway, Sweden.
Cf. *Oe. longicolle*, above.

170. **Oe. danicum** Hallas.
(Pl. LIV, fig. 516.)
1905, p. 404, fig. 10; Hirn 1906, p. 12, Pl. IV, fig. 24.

Dioecious, nannandrous, gynandrosporous; oogonium 1, pyriform or pyriform-globose, operculate, division supramedian; oospore globose or depressed-globose, filling oogonium or not, spore wall smooth; androsporangium 1–3, hypogynous or scattered; dwarf male obovoid, unicellular, on suffultory cell or scattered; vegetative cell 4–7×20–82μ; oogonium 21–23×23–35μ; oospore 19–20×15–20μ; androsporangium 4–7×7–12μ; dwarf male 6–7×14–16μ.

Denmark.

171. **Oe. decipiens** Wittrock.
(Pl. LV, fig. 520.)
1870, p. 126; *Oe. vesicatum* Link in De Bary 1856, p. 224, Pl. 5; *Oe. rothii* (Le Cl.) Pringsh. f. *major* West and West 1897. p. 5; Hirn 1900, p. 266, Pl. XLVI, figs. 233 and 234; Collins 1909, p. 262; Heering 1914, p. 188, fig. 258; Tiffany 1926, p. 104, Pl. VIII, fig. 88.

Dioecious, nannandrous, gynandrosporous; oogonium 1–3, sub-depressed globose, operculate, division median, rather narrow; oospore subdepressed or depressed-globose, almost filling the oogonium, spore wall smooth; suffultory cell not swollen; androsporangium 1–6, sub-epigynous, hypogynous, or scattered; dwarf male unicellular, usually on the oogonium; vegetative cell 9–12×28–80μ; oogonium 30–38×27–40μ; oospore 25–34×23–28μ; androsporangium 9–10×8–15μ; dwarf male 6–7×13–15μ.

United States: Michigan, Iowa, New Jersey; France, Germany, Sweden, England; Africa.

171a. **Form dissimile** Hirn.
(Pl. LV, figs. 521 and 522.)
1900, p. 267, Pl. XLVI, fig. 285.

Gynandrosporous; vegetative cells evidently capitellate, 8–11×25–65μ; oogonium 28–35×23–38μ; oospore 23–34×21–30μ; androsporangium 8–9×6–10μ; dwarf male 5–6×11–14μ.

United States: Michigan; Brazil.

171b. **Var. africanum** Tiffany.
(Pl. LV, figs. 523 and 524.)
1929, p. 74; *Oe. decipiens* Witt. forma in West and West 1897, p. 5, and in Hirn 1900, p. 267, Pl. XLVI, fig. 284.

Africa.
171c. Var. bernardense (Bates) Hirn.
(Pl. LV, fig. 525.)
1900, p. 268, Pl. XLVI, fig. 286; Oe. bernardense Bates 1886, p. 313; Oe. londinense Wittr. var. compressum West 1891, p. 110, Pl. 18, figs. 10-12.

Smaller; gynandrosporous; androsporangium to 8-seriate; vegetative cell 8-12×18-45μ; oogonium 25-31×21-32μ; oospore 21-29×17-24μ; androsporangium 7-11×5-11μ; dwarf male 6-7×10-12μ.

England, Spain.

The tendency of the decipiens group toward capitellate cells reaches a maximum in f. dissimile. The others are either not noticeably or only somewhat capitellate. The small size, nannandrous habit, and median operculum are also characteristic. F. africanum is idioandrosporous, while f. bernardense is gynandrosporous.

172. Oe. macrospermum West and West.
(Pl. LV, figs. 527 and 528.)
1897, p. 472, Pl. 7, figs. 6 and 7; Hirn 1900, p. 227, Pl. XXXVIII, fig. 232; Oe. macrospermum West and West f. patagonicum Borge and Hirn in Borge 1901, p. 9, Pl. 1, fig. 1, and in Hirn 1906, p. 18, Pl. III, fig. 18; Tiffany 1926, p. 105, Pl. VIII, figs. 83 and 94.

Dioecious, nannandrous, gynandrosporous; oogonium 1 (rarely 2), subdepressed to depressed-globose, operculate, division median, narrow; oospore subdepressed-globose, filling the oogonium, spore wall smooth; dwarf male slightly curved or straight, not infrequently at right angles to the filament, on suffultory cell or on oogonium or scattered; antheridium exterior, 1-4; basal cell elongate; androsporangium 1-?; vegetative cell 10-16×30-80μ; oogonium 39-46×34-44μ; oospore 36-44×32-42μ; dwarf male stipe 9-14×16-30μ; androsporangium 14-15×10-11μ; antheridium 7-10×6-16μ.

United States: Iowa, Michigan, Ohio; England, Latvia; Patagonia.

The above description as emended by Tiffany (1926) from material collected in Iowa includes f. patagonicum Borge and Hirn (Borge 1901). The species is characterized by its particularly straight vegetative cells, narrow median operculum, and dwarf males scattered and often at right angles to the filament.

173. Oe. costatum Transeau nov. sp.
(Pl. LVI, fig. 548.)
Dioecious, nannandrous, gynandrosporous; oogonium 1, depressed globose, with verticillate folds forming distinct pointed projections at the suture, operculate, division narrow, supramedian; oospore depressed-globose, filling oogonium, spore wall smooth; androsporangium hypogynous; vegetative cell usually capitellate; terminal cell with rounded apex; vegetative cells 12-15×50-70μ; oogonium 50-55×40-44μ; oospore 48-53×36-42μ; androsporangium 12-13×10-12μ.
United States: New York (Smithtown Pond and Fish Hatchery Pond, Long Island).

Distinguished by its depressed-globose oogonia with verticillate folds forming pointed projections at the suture. It is larger than *Oe. boreale* below and is further distinguished by the shape and form of the oogonium.

174. *Oe. boreale* Hirn.

(Pl. LVI, fig. 542.)

1900, p. 275, Pl. XLVII, fig. 300.

Dioecious, nannandrous; oogonium 1 (rarely 2), pyriform, wall thick and lamellose, medianly plicate. 16–19 verticillate folds, operculate, division supramedian; oospore subglobose (or subpyriform-globose), inflating oogonium, spore wall smooth; vegetative cell capitellate; dwarf male broadly ovoid, unicellular, on oogonium; vegetative cell 18–22×55–150μ; oogonium 58–65×67–78μ; oospore 48–53×48–53μ; dwarf male 14–16×15–20μ.

Finland.

Cf. *Oe. costatum*, above.

175. *Oe. mirandrium* Skuja.

(Pl. LIV, fig. 514.)

1927, p. 101, Pl. II, fig. 12a.

Dioecious, nannandrous, (?) idioandrosporous; oogonium 1 (rarely 2), subpyriform globose, operculate, division supramedian, or nearly superior; oospore globose, quite or not filling oogonium, spore wall smooth; dwarf male unicellular, ovoid, on oogonium; terminal cell obtuse; basal cell elongate; vegetative cell 13–20×28–90μ; suffultory cell 14–24×35–90μ; oogonium 40–43×38–43μ; oospore 35–42×35–42μ; dwarf male 9–26×11–35μ.

Latvia.

Characterized by the supramedian operculum, unicellular dwarf male, and smaller suffultory cell. It bears some resemblance to the macrandrous *Oe. pringsheimii* (No. 95.)

176. *Oe. contortum* Hallas.

(Pl. XLVIII, fig. 464.)

1905, p. 399, fig. 2; Hirn 1906, p. 11, Pl. IV, fig. 25.

Dioecious, nannandrous, gynandrosporous; oogonium 1 (rarely 2), depressed-globose (rarely pyriform), operculate, division inframedian; oospore depressed (rarely globose), quite filling oogonium, spore wall smooth; androsporangium 1–5, curved, hypogynous or rarely epigynous or scattered; dwarf male obovoid, unicellular, on oogonium; vegetative cell 5–7×20–60μ; oogonium 23–35×16–35μ; oospore 16–28×12–21μ; androsporangium 5–7×7–14μ; dwarf male 4×13μ.

Denmark.
The twisted appearance of the filaments, the inframedian operculum, and the non-filled oogonia are characteristic. It should be remarked that Hallas’ original figure which Hirn copies gives every evidence of an inframedian “pore.” The description however indicates an operculate oogonium. The curved filaments are similar to those of the monoecious Oe. curvum (No. 2). It should be compared with Oe. platygynum (No. 167).

177. *Oe. schmidlei* Gutwinski.

(Pl. LVIII, fig. 572.)

1896, p. 2, Pl. 1, fig. 2; Hirn 1900, p. 228, Pl. XXXVIII, fig. 234.

Dioecious, nannandrous; oogonium 1, obovoid-globose, operculate, division superior (? narrow); oospore globose, not filling oogonium. Spore wall pitted, rather thick; dwarf male a little curved, on suffultory cell, antheridium exterior, I; vegetative cell 10×25-90μ; suffultory cell 22×44μ; oogonium 29×32-37μ; oospore 26×26μ; dwarf male stipe 5×27μ; antheridium 5-6×5-6μ.

Austria; British Columbia.

Gutwinski’s figure leaves room for doubt as to the exact nature of the oospore wall. Hirn (1900) regards it as “membrana porifera” which I have interpreted as pitted. The record from British Columbia by Mr. G. H. Wailes gave no added data. In general appearance it resembles the larger and smooth spored *Oe. hians* (No. 180).

178. *Oe. longatum* Kützing.

(Pl. LVIII, fig. 563.)

1853, p. 11, Pl. 33, fig. 6; Witttr. 1874, p. 38; Nordst. 1877, p. 28; *Oe. crispulum* Wittr. and Nordst. in Witttr. 1872, p. 5; Hirn 1900, p. 239, Pl. XL, fig. 248; Heering 1914, p. 182, fig. 249; Tiffany 1926, p. 105, Pl. IX, fig. 106; P. B. A. No. 82.

Dioecious, nannandrous; oogonium 1-3, ovoid to ellipsoid, operculate, division superior; oospore ellipsoid about filling the oogonium, spore wall usually smooth, basal cell elongate; terminal cell obtuse; dwarf male on the oogonium; antheridium exterior, 1-?, curved; vegetative cells 4-7×10-35μ; oogonium 16-18×21-25μ; oospore 15-17×17-19μ; dwarf male stipe 5-6×10-15μ; antheridium 4-5×5-6μ.

United States: Iowa, Massachusetts, Pennsylvania; Austria, England, Finland, Germany, Sweden; British Columbia.

Cf. *Oe. rugulosum*, below.

179. *Oe. rugulosum* Nordstedt.

(Pl. LVIII, fig. 560.)

1877, p. 28, Pl. 3, figs. 12 and 28; *Oe. sp.* Borge 1896, p. 5, Pl. 1, fig. 4; Hirn 1900, p. 241, Pl. XL, figs. 249 and 250; Heering 1914, p. 182, fig. 250; Transeau 1917, p. 231; Tiffany 1926, p. 105, Pl. IX, fig. 96.

Dioecious, nannandrous; oogonium 1-2, obovoid or obovoid-ellipsoid, operculate, division superior; oospore ellipsoid, nearly filling oogonium
Oedogonium

(or rarely globose-ellipsoid, not filling oogonium) spore wall sometimes crenulate; dwarf male on or near oogonium; antheridium exterior, 1–?, curved; vegetative cell 4–8×10–35μ; oogonium 16–20×22–29μ; oospore 15–18×19–23μ; antheridium 4–5×5–6μ; dwarf male 5–7×11–14μ.

United States: Iowa, Michigan, New York; Denmark, France, Sweden; Australia.

179a. Form minutum (Hansgirg) Hirn.

(Pl. LVIII, fig. 561.)

1900, p. 242, Pl. XL, fig. 251; Oe. crispulum Wittr. and Nordst. var. minutum Hansg. 1886, p. 44.

Smaller; median spore wall distinctly crenulate (Transeau); vegetative cell 3–7×12–40μ; oogonium 14–18×18–24μ; oospore 13–17×15–20μ.

United States: Illinois; Austria.

179b. Form rotundatum Hirn.

(Pl. LVIII, fig. 562.)

1900, p. 242, Pl. XL, fig. 252.

Oogonium a little larger and shorter; oospore globose-ellipsoid; vegetative cell 5–8×15–31μ; oogonium 19–23×20–26μ; oospore 18–22×18–23μ; dwarf male stipe 5–6×11–15μ; antheridium 4–6×4–6μ.

Germany.

This species is near Oe. longatum (No. 178) and is separable largely on the basis of the form of the oogonium and relative length of the oospore. Sometimes the oospore wall of Oe. rugulosum is crenulate. The latter is characteristic of f. minutum, which is smaller and has more obovoid oogonia. F. rotundatum has globose-ellipsoid oospores and slightly larger oogonia.

180. Oe. hians Nordstedt and Hirn.

(Pl. LVIII, figs. 570 and 571.)

In Hirn 1900, p. 227, Pl. XXXVIII, fig. 233.

Dioecious, nannandrous, gynandrosporous; oogonium 1–2, subovoid or globose, operculate, division superior, wide; oospore globose, quite filling oogonium, spore wall smooth, thick, and often lamelllose; suffultory cell tumid; androsporangium 1–2, subepigynous; basal cell elongate; terminal cell apically obtuse; dwarf male curved, on suffultory cell, antheridium exterior, unicellular; vegetative cell 9–15×37–145μ; suffultory cell 26–33×40–80μ; oogonium 37–43×45–60μ; oospore 33–40×38–40μ; androsporangium 11–12×15–18μ; dwarf male stipe 7–9×32–35μ; antheridium 6–8×5–6μ.

United States: Iowa; Brazil.

Characterized by its swollen suffultory cells, wide operculum, and tendency toward capitellate vegetative cells.
181. *Oe. hoersholmiense* Hallas.

(Pl. LVII, fig. 559.)

1905, p. 400, fig. 5; Hirn 1906, p. 15, Pl. IV, fig. 21.

Dioecious, nannandrous, gynandrosporous; oogonium 1 (rarely 2), ellipsoid, operculate, division superior; oospore ellipsoid or globose, not filling oogonium, spore wall smooth; androsporangium 1–5, often hypogynous or scattered; basal cell elongate; terminal cell obtuse; dwarf male curved, on oogonium, antheridium exterior, 1–2; vegetative cell 7–12×44–160μ; oogonium 30–36×56–68μ; oospore 26–32×32–45μ; androsporangium 7–12×16–21μ; dwarf male stipe 9–12×30–35μ; antheridium 7–8×10–11μ; basal cell 3–14×16–50μ.

Denmark.

This species is perhaps near *Oe. ciliatum* (No. 185) from which it differs in its smaller size, longer vegetative cell, and obtuse terminal cell. The figure of Hallas would seem to indicate an operculum in a supreme position, although the description records "superior." I have included it in both positions in the key.

182. *Oe. laetevires* Wittrock.

(Pl. LVII, fig. 558.)

In Zeller 1876, p. 427; Hirn 1900, p. 239, Pl. XL, fig. 247.

Dioecious, nannandrous; oogonium 1 (rarely 2), subobovoid-globose, operculate, division superior; oospore globose or subdepressed-globose, filling oogonium or enlarging it, spore wall smooth; dwarf male on oogonium, stipe a little curved, antheridium exterior, 1–2; vegetative cell 12–13×18–32μ; oogonium 30–34×32–36μ; oospore 28–32×27–29μ; dwarf male stipe 7–8×20–21μ; antheridium 6×5–7μ.

Brazil.

_Cf. Oe. macrandrium* (No. 184).

183. *Oe. pluviale* Nordstedt.

(Pl. XL, figs. 392 and 393.)

Dioecious, nannandrous, idioandrosporous; oogonium 1 (very rarely 2–3), obovoid-globose or subglobose, operculate, division superior; oospore subglobose or subellipsoid-globose, almost filling oogonium, spore wall smooth; vegetative cell varying much in the same plant; basal cell elongate; terminal cell obtuse; androsporangium to 10-seriate; dwarf male broadly obovoid, unicellular, on oogonium; vegetative cell 22–29×20–55μ; androsporangial vegetative cell 18–27×18–27μ; oogonium 31–45×31–50μ; oospore 32–40×31–43μ; androsporangium 17–25×6–13μ; dwarf male 10×14–15μ.
United States: California; Austria, England, France, Spain, Germany, Hungary, Italy, Ireland, Switzerland, Sweden; Siam.

This species is the *Oe. diplandriuni* Juranyi rather widely copied in morphological texts. It is characterized by its short vegetative cells, clustered unicellular dwarf males, and compact and numerous antheridia. It bears some resemblance to the imperfectly known *Oe. fonticola* (No. 208).

184. *Oe. macrandrium* Wittrock.

(Pl. LVII, fig. 549.)

1870, p. 130, Pl. I, figs. 3–5; Hirn 1900, p. 233, Pl. XXXIX, fig. 240; Collins 1909, p. 258; Heering 1914, p. 180, fig. 248; Tiffany 1926, p. 106, Pl. IX, fig. 97.

Dioecious, nannandrous; oogonium 1–4, globose-ovoid, operculate, division superior; oospore globose, rarely ovoid-globose, not completely filling the oogonium, spore wall smooth; terminal cell obtuse or very shortly apiculate; dwarf male on or near the oogonium, stipe much curved, sometimes 2–3 celled; antheridium 1–7; vegetative cells 15–20 × 45–100μ; oogonium 36–42×43–54μ; oospore 31–37×33–39μ; dwarf male stipe 12–13×24–33μ; antheridium 9–10×7–10μ.

United States: Ohio, Iowa, Massachusetts, Pennsylvania; England, Finland, France, Germany, Denmark, Norway, Sweden, Switzerland.

184a. Form *acuminatum* Hirn.

(Pl. LVII, fig. 550.)

1900, p. 234, Pl. XXXIX, fig. 241.

Sweden.

184b. Form *aemulans* Hirn.

(Pl. LVII, fig. 551.)

1906, p. 43; *Oe. macrandrium* Wittr. var. *aemulans* Hirn 1900, p. 235, Pl. XXXIX, fig. 242; (?) *Oe. lundense* Wittr. in Wolle 1887, p. 79, Pl. 77, figs. 9 and 10.

United States: Pennsylvania, California, Michigan, Illinois, Mississippi; Brazil.

184c. Form *lundense* (Wittrock) Hirn.

(Pl. LVII, fig. 552.)

1906, p. 42, Pl. III, fig. 19; *Oe. lundense* Wittr. 1872, p. 4, and 1874, p. 23; *Oe. lundense* Wittr. in Hirn 1900, p. 237, Pl. XL, fig. 245; *Oe. fionica* Hallas 1905, p. 401, fig. 6.

Oogonium subobovoid-globose; oospore wall sometimes thick; vegetative cell 13–21×13–50μ; oogonium 31–40 (–45) ×34–43μ; oospore
The Oedogoniaceae

Finland, France, Denmark, Sweden.

184d. Var. propinquum (Wittrock) Hirn.

(Pl. LVII, fig. 553.)

1906, p. 42, Pl. IV, fig. 20; Oe. propinquum Witt. 1870, p. 120, and in Hirn 1900, p. 236, Pl. XL, fig. 243; Or. eremitum Hallas 1905, p. 403, fig. 8.

Smaller; oogonium 1–3; vegetative cell 8–14 × 18–70 μ; oogonium 28–36 × 28–45 μ; oospore 24–31 × 24–31 μ; dwarf male stipe 11–14 × 20–35 μ; antheridium 7–9 (–12) × 6–8 μ.

United States: Illinois, Alabama; Austria, France, Sweden, Denmark, Latvia.

184e. Var. hohenackerii (Wittrock) Tiffany.

(Pl. LVII, figs. 554–556.)

1929, p. 75; Oe. hohenackerii Witt. 1874, p. 23, and in Hirn 1900, p. 238, Pl. XL, fig. 246; Oe. tumidulum in Hohenacker Alg. Exs. No. 404.

United States: Michigan, Ohio; India.

184f. Var. scrobiculatum Ackley.

(Pl. LVII, fig. 557.)

1929, p. 305. Pl. XXXVI, figs. 17–19.

Oogonium globose to subglobose; median layer of oospore wall scrobiculate; vegetative cell 9–11 × 27–60 μ; oogonium 32–35 × 30–35 μ; oospore 31–33 × 31–32 μ; dwarf male stipe 12 × 10–18 μ; antheridium 8 × 6–10 μ.

United States: Michigan (Ox-bow of river near Holland).

The macrandrium group is perhaps one of the most interesting and variable in the genus. The species has rather an unfortunate name to be nannandrous. The group is readily recognized by its frequently seriate oogonia, its curved and twisted dwarf males resting on or near the oogonia and frequently clustered, and its relatively short vegetative cells. Oe. laetevirens (No. 182) is separable from the group largely on its smaller size. F. lundense has very short vegetative cells, and those of var. hohenackerii are slightly longer. Var. scrobiculatum is the only member of the group with scrobiculate oospores. The remaining forms and varieties are separable largely on the basis of size.
185. *Oe. ciliatum* (Hassall) Pringsheim.

(Pl. LIX, fig. 583.)

Vesiculiera ciliata Hass. 1845, p. 202, Pl. 52, fig. 2; *Oe. ciliatum* Pringsh. 1856, p. 227, Pl. 1, figs. 1–10; Pringsh. 1858, p. 70, Pl. 4, figs. 1–14, and Pl. 5, fig. 8; *Oe. piliferum* Auerswald in Rabenh. Alg. Sachs. 1855; *Him* 1900, p. 243, PI. XLI, fig. 253; Heering 1914, p. 183, fig. 252; Tiffany 1926, p. 106, Pl. IX, figs. 98 and 99.

Dioecious, nannandrous, gynandrosporous; oogonium 1–7, ovoid, to ovoid-ellipsoid (rarely nearly ellipsoid), operculate, division superior or nearly supreme; oospore ovoid to subellipsoid, rarely globose, nearly filling oogonium, spore wall smooth; androsporangium to 8-seriate, often subepigynous; basal cell elongate; terminal cell setiform; dwarf male curved, on oogonium; antheridium exterior, 1; vegetative cell 14–24 × 35–92 μ; oogonium 43–50 × 55–72 μ; oospore 40–47 × 44–57 μ; androsporangium 14–20 × 10–20 μ; dwarf male stipe 10–15 × 24–31 μ; antheridium 8–10 × 10–11 μ.

United States: Iowa, Ohio; England, Finland, Germany, Spain, Sweden, Latvia; British Columbia.

Characterized by its setiform terminal cells and ovoid to ovoid-ellipsoid oogonia. The division of the oogonium is quite often practically supreme rather than superior. It is near *Oe. wabashense* (No. 192); the latter has capitellate vegetative cells, supreme operculum, and smaller oogonia.

186. *Oe. spectabile* Hirn.

(Pl. XLI, figs. 403–405.)

1900, p. 284, Pl. XLIX, fig. 317.

Dioecious, nannandrous, idioandrosporous; oogonium 1, obovoid-ellipsoid or obovoid, operculate, division superior; oospore ellipsoid, nearly filling oogonium, spore wall smooth; androsporangium to 16-seriate, the androsporangial part of the filament often curved; basal cell elongate; dwarf male broadly obovoid, unicellular, on oogonium; vegetative cell 20–32 × 25–90 μ; oogonium 42–50 × 63–72 μ; oospore 40–48 × 55–62 μ; androsporangium 19–27 × 11–19 μ; dwarf male stipe 10–15 × 16–21 μ.

United States: Mississippi; Australia.

Characterized by the wide variation in cell diameter, the unicellular dwarf male, and the pronounced curve of the terminal part of the androsporangial filament. It is similar to *Oe. implexum* (below) which is smaller and has relatively more slender vegetative cells.

187. *Oe. implexum* Hirn.

(Pl. XLI, figs. 400 and 401.)

1900, p. 283, Pl. XLIX, fig. 316.

Dioecious, nannandrous, gynandrosporous; oogonium 1–3, sub-obovoid-ellipsoid, operculate, division superior; oospore ellipsoid, filling oogonium, spore wall smooth; androsporangium to 20-seriate...
The Oedogoniaceae

(filament containing androsporangia curved); dwarf male broadly ovoid, unicellular, on oogonium; vegetative cell 16–20 × 33–100 μ; oogonium 38–45 × 50–75 μ; oospore 36–42 × 47–60 μ; androsporangium 16–20 × 13–25 μ; dwarf male 12–14 × 13–15 μ.

Australia.

Cf. Oe. spectabile, above.

188. Oe. monile Berkeley and Harvey.

(Pl. LVIII, figs. 564 and 565.)

In Hooker 1860, p. 342, Pl. 196, fig. B; Wittr. 1874, p. 40; (?) Oe. birmanicum Wittr. in Moebius 1892, p. 430, fig. 9B; Hirn 1900, p. 229, Pl. XXXVIII and XXXIX, fig. 233.

Dioecious, nannandrous; oogonium 1–8, subovoid or subglobose, operculate, division superior, very broad; oospore globose or subglobose, quite filling oogonium (except in length), spore wall of three layers: outer layer smooth, middle layer scrobiculate, inner layer smooth; vegetative cell sometimes capitellate; basal cell elongate; terminal cell obtuse; dwarf male a little curved, near oogonium, antheridium exterior; 1–2; vegetative cell 9–15 × 50–160 μ; suffultory cell 21–29 × 40–57 μ; oogonium 30–39 × 30–56 μ; oospore 28–38 × 28–38 μ; dwarf male stipe 9 × 25 μ; antheridium 7 × 7 μ.

United States: Massachusetts, Michigan; Australia; Brazil.

188a. Form borgei Hirn.

(Pl. LVIII, fig. 567.)

1900, p. 230, Pl. XXXIX, fig. 237.

Australia.

188b. Var. eminens Hirn.

(Pl. LVIII, figs. 568 and 569.)

1900, p. 231, Pl. XXXIX, fig. 238.

Much larger; gynandrosporous, androsporangium subepigynous; dwarf male on suffultory cell, antheridium 1–2; vegetative cell 18–25 × 65–150 μ; suffultory cell 38–41 × 48–72 μ; oogonium 56–68 × 55–74 μ; oospore 53–60 × 50–58 μ; androsporangium 19–23 × 15–18 μ; dwarf male stipe 18–19 × 40–48 μ; antheridium 10–13 × 12–14 μ.

Australia.

188c. Form victoriense G. S. West.

(Pl. LVIII, fig. 566.)

1900, p. 45, fig. 6 A and B.

Dwarf male a little longer and more narrow, on suffultory cell; vegetative cell 12–14 × 60–96 μ; suffultory cell 27–28 × 68–83 μ; oogonium 42–45 × 42–52 μ; oospore 40–42 × 40–42 μ; dwarf male stipe 6–8 × 38–44 μ.

Victoria, Africa.
The species is characterized by its scrobiculate oospore, wide operculum, enlarged suffultory cell, and usually many-seriate oogonia. Var. *eminens* is much larger and f. *borgei* is considerably larger than the type; f. *victoriense* is near f. *borgei*, differing in the size of the oospore.

189. *Oe. obtruncatum* Wittrock.

(Pi. LIX, fig. 577.)

1874, p. 41; Hirn 1900, p. 284, Pl. XLIX, fig. 318.

Dioecious, nannandrous, gynandrosporous; oogonium 1–6, ellipsoid, or globose-ellipsoid, operculate, division supreme, operculum small and deciduous; oospore of same form as oogonium, nearly filling it, spore wall smooth; vegetative cell evidently capitellate; basal cell elongate; terminal cell (often the oogonium) apically obtuse; dwarf male oblong-pyiform, curved, unicellular, on oogonium; vegetative cell 18–22× 56–110μ; oogonium 45–55×56–68μ; oospore 43–53×52–66μ; androsporangium 20×24μ; dwarf male stipe 17–20×36–40μ; antheridium 6–8×4–6μ.

United States: Ohio, Illinois; England; Brazil; India; Australia.

(Pi. LIX, figs. 579-582.)

1900, p. 285, Pl. L, fig. 319.

Oogonium larger; androsporangium 1–5, hypogynous or subepigynous or epigynous; terminal cell sometimes setiform; vegetative cell 18–22× 66–150μ; oogonium 55–58×63–75μ; oospore 53–56×61–73μ; androsporangium 20–22×19–22μ.

Bengal.

189b. Var. *ellipsoideum* Wittrock.

(Pi. LIX, fig. 578.)

1878, p. 141; Hirn 1900, p. 286, Pl. L, fig. 320.

Oogonium longer, ellipsoid, 1–2, terminal; vegetative cell 17–23× 54–110μ; oogonium 42–54×66–75μ.

Venezuela.

Oe. obtruncatum is characterized by the usually capitellate vegetative cells, supreme position of the operculum, unicellular nannandrium, and gynandrosporous habit. The two varieties *completum* and *ellipsoideum* are separable largely on the basis of differently sized oogonia. The species is much larger than the gynandrosporous *Oe. wabashense* (No. 192). It is perhaps nearest in general appearance to *Oe. praticolum* (No. 190) and *Oe. supremum* (No. 191), both of which are idioandrosporous and have larger oogonia.
190. **Oe. praticolum** Transeau.

(Pl. LX, figs. 586-588.)

1914, p. 298, Pl. XXIX. figs. 1–5; Tiffany 1926, p. 107, Pl. VII, figs. 82–84.

 Dioecious, nannandrous, idioandrosporous; oogonium 1–7, ellipsoid to globose-ellipsoid, often terminal, sometimes scattered; wall sometimes rather thick, operculate, division supreme, lid small and deciduous; oospore ellipsoid to globose-ellipsoid, quite filling the oogonium, wall smooth, androsporangium 1–20; vegetative cell slightly capitellate; basal cell usually elongate; terminal cell apiculate or extended into a long hyaline seta; antheridium exterior, 1; vegetative cell, female 16–26×65–130μ; vegetative cell of androsporangial filament 14–22×56–110μ; oospore 46–58×60–72μ; androsporangium 20–24×18–22μ; dwarf male stipe 8–14×21–28μ; antheridium 6–10×7–12μ.

United States: Illinois, Ohio, Iowa.
Cf. **Oe. obtruncatum** (No. 189).

191. **Oe. supremum** Tiffany.

(Pl. LIX, figs. 573-576.)

1924, p. 185, Pl. I, figs. 3 and 4, Pl. II, figs. 4 and 5; 1926, p. 107, Pl. VIII, figs. 90 and 91.

 Dioecious, nannandrous, idioandrosporous; oogonium 1–4, globose or ellipsoid-globose, often terminal, operculate, division at the upper extremity of oogonium, lid often deciduous; oospore globose or ellipsoid-globose, filling oogonium, spore wall smooth; androsporangium 1–6; vegetative cell distinctly capitellate; basal cell elongate; dwarf male broadly obovoid, unicellular, on oogonium; vegetative cell 24–32×60–132μ; oogonium 66–78×72–90μ; oospore 60–66×66–84μ; androsporangium 26–28×30–40μ; dwarf male 20–24×24–26μ; basal cell 28–32×90–110μ.

United States: Iowa.
Cf. **Oe. obtruncatum** (No. 189).

192. **Oe. wabashense** Tiffany.

(Pl. LX, figs. 584 and 585.)

1927, p. 203, Pl. IX, figs. 3–5.

 Dioecious, nannandrous, gynandrosporous; oogonium 2–3, ellipsoid or ovoid, often terminal, operculate, division supreme, lid often deciduous; oospore ellipsoid or ovoid (rarely globose), filling oogonium or not, spore wall smooth; androsporangium 1–3, subepigynous; vegetative cell capitellate; basal cell elongate; dwarf male on oogonium; antheridium 1–2; vegetative cell 12–20×36–64μ; oogonium 36–42×44–60μ; oospore 34–38×40–55μ; androsporangium 12–16×10–20μ; dwarf male stipe 12–16×24–40μ; antheridium 7–12×6–10μ; basal cell 18–20×40–64μ.

United States: Indiana, Ohio.
Cf. **Oe. ciliatum** (No. 185) and **Oe. obtruncatum** (No. 189).
193. Oe. tentoriale Nordstedt and Hirn.

(PL LXI, fig. 597.)

_in Hirn 1900, p. 248, Pl. XLII, fig. 260.

 Dioecious, nannandrous; oogonium 1, terminal, broadly ellipsoid or obovoid-globose, division supreme, lid small, deciduous, oogonium wall longitudinally ribbed on the inner surface, ribs often Anastomosing; oospore quite filling oogonium, outer layer of the spore wall with 40–45 longitudinal, very finely crenulate ribs, closely filling in between the ribs of the oogonium, connected by delicate transverse lines, inner layer smooth; basal cell elongate; terminal cell obtuse; dwarf male suberect, on suffultory cell, antheridium exterior 1–?; vegetative cell 20–33 (–37) × 60–225 μ; oogonium 66–82 × 73–88 μ; dwarf male stipe 10–15 × 37–48 μ; antheridium 9–12 × 7 μ.

United States: Illinois; Brazil.

Cf. Oe. acrosporum (No. 195).

194. Oe. michiganense Tiffany.

(PL LXI, figs. 594–596.)

1927, p. 205, Pl. IX, figs. 10–12.

Dioecious, nannandrous, gynandrosporous; oogonium 1–7, globose to ellipsoid-globose (rarely subglobose), operculate, division at the upper extremity of the oogonium; oospore globose, filling the oogonium or not, outer layer of spore wall smooth, middle layer with 12–24 crenulate, sometimes Anastomosing, longitudinal ribs, inner layer smooth; suffultory cell enlarged; vegetative cell broadly capitellate; basal cell elongate; terminal cell, occasionally oogonium, apically obtuse; dwarf male, a little curved, on suffultory cell, antheridium interior; vegetative cell 12–24 × 80–160 μ; suffultory cell 32–48 × 64–80 μ; oogonium 50–64 × 50–80 μ; oospores 44–60 × 44–60 μ; androsporangium 16–20 × 16–20 μ; dwarf male 14–20 × 40–56 μ; basal cell 18–20 × 70–100 μ.

United States: Michigan.

The only nannandrous member of the genus possessing a capitellate vegetative cell, a supreme operculum, and longitudinally ribbed oospores.

195. Oe. acrosporum De Bary.

(Pl. LX, fig. 589.)

1854, p. 47 et seq., Pl. 3, figs. 1–12; Oe. acrosporum De Bary f. connectens Wittr. in Wittr. and Nordst. Exs. No. 1101, 1893, in P. B. A. No. 409, 1898, in Hirn 1900, p. 245, Pl. XLII, fig. 255; Hirn 1900, p. 244, Pl. XLII, fig. 254; Collins 1909, p. 250; Heering 1914, p. 183, fig. 253; Tiffany 1926, p. 107, Pl. IX, fig. 103.

Dioecious, nannandrous, gynandrosporous (or idioandrosporous); oogonium 1, terminal, ellipsoid, operculate, division supreme, operculum small and deciduous; wall of oogonium with longitudinal, sometimes Anastomosing, ridges on the inner surface; oospore quite filling the oogonium, outer layer of spore wall with 23–30 longitudinal ridges, closely filling in between the ridges of the oogonium, inner smooth; basal cell elongate; terminal cell obtuse; androsporangia 1–2, hypo-
gynous; dwarf male curved, on the suffultory cell, stipe sometimes 2-3 celled, upper cells long, antheridium exterior, 1-2; vegetative cell 12-21×40-125μ; suffultory cell 16-25×26-76μ; oogonium 35-48×50-63μ; androsporangium 16-21×12-15μ; dwarf male stipe, upper cell 6-8×55-71μ; lower cell 9-12×30-38μ; antheridium 6-8×9-15μ.

United States: Ohio, Illinois, Iowa, Michigan, New York, Massachusetts; Austria, England, Finland, France, Germany, Norway, Sweden; Brazil; Manchuria; Madagascar; British Columbia.

195a. Form boreale (Wolle) Hirn.

(Pl. LX, fig. 590.)

1900, p. 245, Pl. XLI, fig. 256; Oe. acrosperm De Bary var. boreale Wolle 1887, p. 84, Pl. 79, figs. 10 and 11.

Filaments few-celled; vegetative cell 14-16×45-80μ.

It is very doubtful if this form of the genus is tenable. The plant described by Wolle seems to have had fewer cells to the filament than the species proper. From data at hand regarding other species, it appears this variability in the number of the cells is largely a matter of environmental conditions. There are some species in the genus, however, that are never found except with very few cells to a filament. The form is retained until more definite data can be secured regarding its variations. If it is normally few celled, Wolle’s varietal position must be maintained.

195b. Var. bathmidosporum (Nordstedt) Hirn.

(Pl. LX, fig. 592.)

1900, p. 246, Pl. XLII, fig. 259; Oe. bathmidosporum Nordst. 1878, p. 179; Oe. acrosperm De Bary in Gutw. 1897, p. 8; Oe. acrospermum De Bary in P. B. A. No. 103, 1896.

Smaller; ribs fewer, 11-17, evidently crenulate; dwarf male stipe unicellular; vegetative cell 12-17×35-125μ; suffultory cell 15-22×40-110μ; oogonium 30-40×40-54μ; dwarf male stipe 9-11×30-34μ; antheridium 8-10×9-12μ.

United States: Massachusetts; Austria, Sweden; Brazil.

195c. Var. floridense Wolle.

(Pl. LX, fig. 593.)

1887, p. 83, Pl. 85, figs. 1 and 2; Hirn 1900, p. 246, Pl. XLI, fig. 258.

Smaller with elongate vegetative cell and more tumid suffultory cell; dwarf male stipe 2-3 celled; vegetative cell 7-8×36-85μ; oogonium 33-35×45-50μ.

United States: Florida.

The only record is that of Wolle.
159d. Var. *majusculum* Nordstedt.

Oe. acrosorum is readily identified by its single terminal oogonium and by the dovetailing of the longitudinal ridges of the inner surface of the oogonium and outer surface of the oospore. The varieties and form (see note under each) are separable largely on the basis of number of ribs and size of cells. The species is easily distinguished from *Oe. tentoriale* (No. 193) by its smaller number of longitudinal ribs on the oospore, by its more slender cells, and differently shaped oogonia.

Species Imperfectly Known.

The following members of the genus are recorded with varying degrees of certainty regarding their validity. A few are unquestionably readily recognized even though a complete description is not available or possible at the present status of our knowledge. Some are very near other species, differing in one or more characters, but lacking sufficient completeness of description to warrant definite placement in the genus. Others are included purely as a matter of record. Wherever possible, the species is included in the key in its probably proper position, with the idea of calling it to the attention of the student of the genus and thereby aid in its identification if collected. Appropriate remarks occur in connection with the description of each species.

196. *Oe. tapeinosporum* Wittrock.

Oo. tapeinosporum var. *Angolense* West and West 1897, p. 5; Him 1900, p. 297, Pl. XXIII, fig. 117; Hearing 1914, p. 224, fig. 344; Tiffany 1926, p. 96, Pl. VII, fig. 81.

Oogonium 1–2, depressed-globose, operculate, division median, distinct; oospore depressed-globose, not (rarely nearly) filling oogonium, spore wall smooth; basal cell subhemispherical; terminal cell obtuse; vegetative cell (2–) 3–5×10–40μ; oogonium 15–19× (14–) 17–23μ; oospore 13–16×8–14μ; basal cell 12–14×5–7μ.

United States: Iowa; England, Germany; Columbia; Africa; India.
This species is rather readily distinguished by its conspicuous operculum and small size. No antheridia have been observed thus far. The Iowa material combined the characters of the type and the variety *Angolense*, and the latter thus becomes untenable. The species is perhaps dioecious, macrandrous.

197. *Oe. angustissimum* West and West.
(Pl. XXV, fig. 220.)
1897, p. 6; Hirn 1900, p. 314, Pl. L, fig. 321.
(?) Monoecious; oogonium 2, transversely inflated; oospore transversely elliptical and inflating oogonium, wall smooth; filament irregularly flexed and very narrow; vegetative cell 1.8–2×13–28μ; oogonium 9.5×10.5–14.5μ; oospore 9.5×6.5μ.

Africa.
As far as is known, this is the smallest species of Oedogonium. Cf. *Oe. inconspicuum* (No. 198) and *Oe. tapeinosporum* (No. 196).

198. *Oe. inconspicuum* Hirn.
(Pl. XXXIV, fig. 313.)
1895, p. 23, Pl. 1, fig. 8; 1900, p. 296, Pl. XXIII, fig. 116; (?) *Oe. minutissimum* Grun. in Hansgirg 1905, p. 436.
(?) Dioecious, macrandrous) Oogonium 1 (rarely 2–3), depressed- or subpyriform-globose, operculate; division median, narrow; oospore depressed-globose, filling the inflated part of oogonium, spore wall smooth; vegetative cell 3–5×20–34μ; oogonium 13–18×(13–)17–23μ; oospore 12–17×8–12μ.

Columbia; Finland, Austria, Sweden.
In common with most of the smaller sized species of the genus, *Oe. inconspicuum* is found attached to other algae or to submerged macrophytes. Cf. *Oe. angustissimum* above and *Oe. tapeinosporum* (No. 196).

199. *Oe. tenuissimum* Hansgirg.
1888a, p. 398; 1888, p. 222; Hirn 1900, p. 315.
(?) Monoecious; filament irregularly curved; oogonium 1, subpyriform, pore median; oospore globose–ellipsoid, not filling oogonium; vegetative cell 2.3–6×9–25μ; oogonium 9–18×14–23μ; oospore 15μ in diameter.

Austria.
Characterized by its median pore and elongated oogonium; cf. *Oe. sexangulare* (No. 135) and *Oe. pusillum* (No. 200).
200. Oe. pusillum Kirchner.

(Pi. XXXIV, fig. 316.)

1878, p. 59; (?) Oe. excisum Wittr. and Lund. in Nordst. 1880, p. 13; Oe. africanum Lagerh. 1893, p. 155; Oe. Klebahnii Lemm. 1893, p. 509, and 1895, p. 28, figs. 4 and 5; ibid. in De Wildemann 1896, p. 66, Pl. 5, figs. 2–7; Oe. africanum Lagerh. in Lemm. 1896, p. 502, Pl. 5, figs. 3–20; Hirn 1900, p. 299, Pl. XXIV, fig. 125; Collins 1912, p. 88; Heering 1914, p. 224, fig. 345; Tiffany 1926, p. 95, Pl. VII, fig. 80.

Oogonium 1 (rarely 2), subbiconic-ellipsoid or subbiconic-globose, seen from above circular, margin even, operculate, division wide; oospore ellipsoid or globose, generally constricted at the middle, not quite filling oogonium, spore wall smooth; basal cell subhemispherical; terminal cell obtuse or obtusely conical; vegetative cell 3–6×10–60μ; oogonium 14–16×15–25μ; oospore 11–13×13–15μ; basal cell 7–8×7–8μ.

United States: Iowa, Illinois; Austria, France, Germany; Africa; Brazil; Sumatra.

This species is usually very readily recognized by its medianly constricted oospore, and whether eventually found to be monoecious or dioecious, it is a distinct species.

201. Oe. selandiae Hallas.

(Pi. XXXVIII, fig. 359.)

1905, p. 496, fig. 14; Hirn 1906, p. 20, Pl. 111, fig. 11.

(?) Monoecious; oogonium 1–2, oblong (or angular-oblong), operculate, division superior; oospore oblong-ellipsoid or obovoid, completely filling oogonium or not; vegetative cell 3–5×13–40μ; oogonium 9–14×27–30μ; oospore 7–12×16–25μ.

Denmark.

To be compared with Oe. gracillimum (No. 114) and with Oe. rugulosum (No. 179).

202. Oe. sancti thomæ Wittrock and Cleve.

(Pi. XXXVIII, fig. 360.)

In Witt. 1874, p. 40; 1878, p. 141; Hirn 1900, p. 304. Pl. XXIX, fig. 173; Collins 1900, p. 265.

Oogonium 1–3, pyriform, operculate, division superior; oospore pyriform-obovoid, not quite filling oogonium, spore wall smooth; basal cell subhemispherical; terminal cell very slender, subhyaline; vegetative cell 7–15×16–88μ; oogonium 28–33×36–50μ; oospore 25–30×28–35μ; basal cell 14–23×8–12μ.

United States: Mississippi, Ohio; West Indies (St. Thomas).

Material from Mississippi and Ohio have been referred to this species, although antheridia were not observed. It is perhaps dioecious, macrandrous.
203. *Oe. fusus* Hallas.

(Pl. XXXIV, fig. 311.)

(?) Dioecious; oogonium 1, ellipsoid, operculate, division median; oospore globose, not filling oogonium, spore wall smooth; vegetative cell 2–3×10–23μ; oogonium 11–15×31–35μ; oospore 12×12μ.

Denmark.

Characterized by its small size and ellipsoid oogonium with globose oospore. Cf. *Oe. inconspicuum* (No. 198) and *Oe. pusillum* (No. 200).

204. *Oe. rhodosporum* (Welwitsch) Wittrock.

(Pl. XL, figs. 388 and 389.)
1874, p. 34; De Toni 1889, p. 72; Hirn 1900, p. 305, Pl. XXXI, fig. 193.

Dioecious (?? macrandrous or nannandrous); oogonium 1–3, obovoid to globose obovoid, operculate, division superior; oospore same form as oogonium, nearly or quite filling oogonium, spore wall smooth; antheridium (?? androsporangium) 1–6; vegetative cell 16–23×20–66μ; oogonium 35–44×45–54μ; oospore 33–41×38–48μ; antheridium (?? androsporangium) 16–19×9–17μ.

France, Portugal.

To be compared with *Oe. pluviale* (No. 183) and with the two following species.

205. *Oe. vesicatum* (Lyngbye) Wittrock.

(Pl. XL, figs. 386 and 387.)

Conferva vesicata Lyng. 1819, p. 140, Pl. 47, fig. D1; *Oe. vesicatum* Wittr. 1874, p. 39; Hirn 1900, p. 306, Pl. XXXI, fig. 194.

Dioecious. oogonium 1, obovoid or globose-obovoid, operculate, division superior; oospore same form as oogonium which it nearly fills, spore wall smooth; antheridium (?? androsporangium) 1–4; vegetative cell, female 17–23×22–74μ; male (?? androsporangial) 16–21×28–63μ; oogonium 40–15×49–60μ; oospore 35–42×40–48μ; antheridium (?? androsporangium) 16–18×11–16μ.

Denmark.

Cf. *Oe. rhodosporum* above and *Oe. montagnei* below.

206. *Oe. montagnei* Fiorini-Mazzanti.

(Pl. XL, figs. 390 and 391.)
1860, p. 259, Pl. 1, figs. 1, 2 and 5; Wittrock 1874, p. 41; Hirn 1900, p. 307, Pl. XXXI, fig. 195.

Oogonium 1–2, obovoid or globose-obovoid, operculate, division superior; oospore of same form as oogonium, filling it or nearly so, spore wall smooth; vegetative cell 18–26×20–110μ; oogonium 40–52×48–63μ; oospore 38–47×43–52μ.

Italy.

Cf. *Oe. rhodosporum* (No. 204) and *Oe. vesicatum* (No. 205).
207. Oe. flexuosum Hirn.
(Pl. XL, fig. 394.)

1900, p. 313, Pl. XLVIII, fig. 310.

Oogonium 1, obovoid or obovoid-globose, operculate, division superior; oospore same form as oogonium and filling it, spore wall smooth; filament irregularly curved; vegetative cell 15–18×12–32μ; oogonium 29–34×29–13μ; oospore 27–32×27–37μ.

Ireland.

Characterized by its curved filaments and short cells. Cf. Oe. fonticola (No. 208) and Oe. implexum (No. 187).

208. Oe. fonticola Al. Braun.
(Pl. XLI, fig. 402.)

In Kuetz. 1849, p. 368, and 1858, p. 13, Pl. 40, fig. 2; Oe. rhodosporum (Welw.) Witt. 1876, p. 47; Hirn 1900, p. 313, Pl. XLIX, fig. 315; Heering 1914, p. 225, fig. 341; Tiffany 1926, p. 106.

Dioecious; oogonium 1–2, obovoid or globose-obovoid, operculate, division superior; oospore obovoid-ellipsoid or subglobose, nearly or quite filling oogonium, spore wall smooth; vegetative cell 16–32×12–70μ; oogonium 36–43 (–45) ×43–56μ; oospore 34–41 (–43) ×40–49μ.

United States: Iowa, Indiana, Mississippi; Austria, Italy, Spain, Germany, England.

Cf. Oe. implexum (No. 187), Oe. flexuosum (No. 207), and Oe. pluviale (No. 183).

West (1912) records the presence of very small apparently male filaments of Oe. fonticola, indicating a condition intermediate between “truly dioecious macrandrous species and those with large nannandria.” If these are really male filaments, the species becomes dioecious, macrandrous. Until the data are more complete, Oe. fonticola must remain in the imperfectly known division of the genus.

209. Oe. oryzae Wittrock.
(Pl. XXI, fig. 190.)

1876, p. 51, Pl. 13, figs. 32 and 33; Hirn 1900, p. 294, Pl. XXII, fig. 113.

Oogonium 1–2, scarcely tumid, subobovoid or subcylindric, pore superior; oospore of same form as oogonium, nearly filling it or sometimes enlarging it, spore wall smooth; basal cell elongate; terminal cell acuminate; vegetative cell 24–39×36–120μ; suffultory cell 45×56–90μ; single or upper series of oogonium 45–55×65–95μ; lower series of oogonium 43–53×45–57μ; oospore 41–51×(41–) 60–80μ.

United States: Mississippi; Italy.

(PI. XXI, figs. 191 and 192.)

1900, p. 294, Pl. XXII, fig. 114; *Oe. seriosporum* Lagerh. 1888, p. 590.

More variable, oogonium sometimes 2–5, lower series of oogonium subcylindric or cylindric-globose; vegetative cell 24–42 (–54) × 38–120μ; oogonium, single or upper series, 48–60×60–99μ, lower series 42–54× (35–) 43–52μ; oospore 40–56×40–75μ.

Germany.

Characterized by the variation in the size of the oogonia and the vegetative cells on the same plant, the species is somewhat near *Oe. mexicanum* (No. 44). The variety is even more variable than the species, and its oogonia are more seriate.

210. *Oe. virceburgense* Hirn.

(Pl. XXXVI, fig. 336.)

1896, p. 8; 1900, p. 301, Pl. XXIV, fig. 128; 1906, p. 54.

Oogonium 1–8, subpyriform- to subdepressed-globose, operculate, division a little above median; oospore subdepressed- or depressed-globose, quite filling oogonium, spore wall smooth; vegetative cell often broadly capitate; basal cell half round; vegetative cell 4–6×13–45μ; oogonium 15–20×15–23μ; oospore 14–19×14–17μ.

Austria, Germany, Hungary.

To be compared with the slightly larger *Oe. spurium* (below) and with *Oe. petri* (No. 90).

211. *Oe. spurium* Hirn.

(Pl. XXXVI, fig. 333.)

1900, p. 301, Pl. XXIV, fig. 131.

Oogonium single, subdepressed- or depressed-globose, operculate, division supramedian; oospore of the same form as oogonium, nearly or completely filling it, spore wall smooth; vegetative cell capitellate; basal cell elongate; terminal cell apically obtuse or truncate-obtuse; vegetative cell 9–13×20–53μ; oogonium 26–29×23–28μ; oospore 24–28× 21–24μ.

United States: Ohio; Brazil.

Cf. *Oe. virceburgense* above. It also has considerable resemblance to the longer celled filaments of *Oe. sphaerandrium* (No. 105).

212. *Oe. velatum* Hallas.

(Pl. XLI, figs. 398 and 399.)

1905, p. 405, fig. 11; Hirn 1906, p. 23, Pl. IV, fig. 27.

Oogonium single, ellipsoid-globose, operculate, division superior; oospore globose, not filling oogonium, middle layer of spore wall echinate; vegetative cell 3–20×25–400μ; oogonium 43×68μ; oospore 35×35μ.

Denmark.
Oedogonium

The cell diameter is extremely variable. The echinate appearance of the oospore is questioned by Hirn (1906), who thinks the oospore may be parasitized.

213. Oe. pilosporum West.

(Pl. XL, fig. 395.)

1891, p. 109, Pl. 18, fig. 3; Hirn 1900, p. 318, Pl. L, fig. 325.

Oogonium single, oblong-ellipsoid, somewhat narrowed at the upper extremity; oospore subglobose, spore wall thick and outer layer densely pilose, the hairs short; vegetative cell 11–12×55–70μ; oogonium 23×48μ; oospore (without hairs) 10×21μ; oospore wall 2μ thick.

Spain.

The above dimensions and description are copied gingerly by Hirn (1900). From West's figure one is inclined to agree with Hirn that the "oospore" may be nothing more than a fungal parasite within the oogonium.

214. Oe. hoehnei Borge.

(Pl. XXVIII, fig. 251.)

1925, p. 12, Pl. I, fig. 11.

(?) Dioecious, macrandrous; oogonium single, ellipsoid, pore superior; oospore globose, not filling oogonium in length; outer spore wall smooth, middle wall areolate; vegetative cell 43–44×148–240μ; oogonium 60–72×90–108μ; oospore 63–65×63–65μ.

Paraguay.

This species has spore markings similar to those of Oe. areolatum (No. 59).

215. Oe. giganteum Kuetzing; Wittrock.

(Pl. XXIX, fig. 260.)

Kuetz. 1845, p. 200; 1853, p. 12, Pl. 37, fig. 2; Wittr. 1874, p. 42; Hirn 1900, p. 295, Pl. XXIII, fig. 115.

(?) Dioecious, macrandrous; oogonium 1, cylindric-ovoid, pore superior; oospore cylindric-ellipsoid or subellipsoid, nearly filling oogonium, spore wall in three layers: outer smooth, middle layer with 25–30 longitudinal rows of pits, inner layer smooth; vegetative cell 30–50×60–225μ; suffultory cell 40–60×60–210μ; oogonium 53–69×67–106μ; oospore 51–65×65–105μ.

United States: Ohio; Austria, England, Denmark, Germany, Sweden.

This species is rather readily identified by its large size and by the longitudinal rows of distinct pits in the middle layer of the oospore wall. It is separable from Oe. capense (No. 216) by its larger size. The arrangement of pits and general appearance are somewhat similar to the nannandrous Oe. concatenatum
(No. 151). It is doubtless a distinct species, no matter what its final description may be.

216. **Oe. capense** Nordstedt and Hirn.
(Pl. XXIX, fig. 257.)

In Hirn 1900, p. 293, Pl. XV, fig. 88.
Oogonium 1–3, obovoid to ellipsoid, pore superior; oospore of same form as oogonium and filling it, spore wall in three layers: outer smooth, middle pitted, with pits in 25–30 longitudinal rows, inner layer smooth; basal cell elongate; vegetative cell 13–17×40–100 μ; oogonium 35–38×53–58 μ; oospore 33–35×46–48 μ.

Africa.

This species is perhaps dioecious, macrandrous, although antheridia are unreported. Cf. *Oe. giganteum* above.

217. **Oe. moniliforme** Wittrock.
(Pl. XII, fig. 114.)

1874, p. 40; Hirn 1900, p. 288, Pl. V, fig. 28.
Oogonium 1–5, pyriform to globose-obovoid or subglose, pore supramedian; oospore globose or subdepressed-globose, not filling oogonium, middle layer of spore wall scrobiculate; terminal cell apically obtuse; vegetative cell 9–11×30–54 μ; oogonium 23–28×28–35 μ; oospore 22–27×22–26 μ.

United States: Michigan, Ohio; **Sweden.**

* The small size of this species together with its definitely scrobiculate spore wall makes it readily identifiable, even though antheridia have not been so far observed.

218. **Oe. inerme** Hirn.
(Pl. XI, fig. 110.)

1900, p. 287, Pl. 11, fig. 10.
(?) Dioecious, macrandrous; oogonium single, subdepressed- or subpyriform-globose, pore median, rimiform and narrow; oospore depressed- or subdepressed-globose, not filling oogonium, spore wall smooth; vegetative cell 12–14×56–96 μ; oogonium 37–39×34–45 μ; oospore 33–38×28–32 μ.

England, France, Germany.

(Pl. XI, fig. 111.)

1900, p. 287, Pl. 11, fig. 11.
Smaller; oogonium depressed- to pyriform-globose; oospore sometimes nearly globose; vegetative cell 9–11×37–90 μ; oogonium 28–32×33–45 μ; oospore 27–29×25–28 μ.

France.

The species is to be compared with *Oe. sociale* (No. 6), *Oe. rufescens* (No. 4), and *Oe. laeve* (No. 1). Var. *mentiens* is smaller.
Oedogonium

219. Oe. sol Hirn.
(Pl. XXXIII, fig. 286.)
1900, p. 303, Pl. XXVIII, fig. 164.

Brazil.

If found to be dioecious, macrandrous, it is near Oe. tumidum (No. 73) and should perhaps be considered a variety of it.

220. Oe. urceolatum Nordstedt and Hirn.
(Pl. XXVII, figs. 238 and 239.)
In Hirn 1900, p. 293, Pl. XIV, fig. 81.

Oogonium 1, obpyriform (rarely oblong-ellipsoid or subellipsoid), pore superior; oospore globose-ellipsoid or ellipsoid, not filling oogonium lengthwise, inflating lower part of oogonium, spore wall in three layers: outer smooth, middle with 15-20 entire, longitudinal ribs, sometimes anastomosate and often spirally curved, inner layer smooth; basal cell elongate; vegetative cell 24-30×120-210μ; oogonium 58-70×100-125μ; oospore 54-60×58-70μ.

Brazil.

To be compared with the monoecious Oe. paulense (No. 52) and with the dioecious Oe. boscii (No. 55).

221. Oe. londinense Wittrock.
1874, p. 39; Cooke 1884, p. 170, Pl. 65, fig. 4; Hirn 1900, p. 317.

Oogonium 1-2, globose, operculate, division median; oospore globose, quite filling oogonium; (?) antheridium 1-2, hypogynous; vegetative cell 10-15×15-75μ; oogonium 33-35×33-43μ; oospore 27-32×27-32μ; (?) antheridium 12×10-11μ.

England; (?) New Jersey.

This species is very uncertain and Cooke’s figure helps none. It has very much the appearance of Oe. areschougii (No. 160) except for Wittrock’s suspicion that it is monoecious. Quite likely Wittrock was wrong, and the “antheridia” are in reality androsporangia.

222. Oe. consociatum Collins and Hervey.
(Pl. XL, fig. 396.)
1917, p. 37, Pl. 1, figs. 1-4; Collins 1918, p. 65; P. B. A. No. 2068.

Dioecious, ? macrandrous; oogonium single, globose to depressed-globose, operculate, division median to superior, narrow but distinct; oospore globose to depressed-globose, filling oogonium, spore wall smooth; basal cell depressed-globose; vegetative cell, more or less
distinctly clavate, 6–12 (-20) × 6–50μ; oogonium 28–26×28μ; oospore 26×24–26μ; basal cell 20–24×12–16μ.

Bermuda.

Characterized by its frequently short and clavate vegetative cells and depressed-globose basal cells. Its general appearance is near that of *Oe. vesicatum* (No. 205), *Oe. montagnei* (No. 206), and *Oe. pluviale* (No. 183). Its resemblance to *Oe. inversum* (No. 77), noted by Collins and Hervey, seems to the writer quite far-fetched. The so-called “stellate clusters” of young plants may be merely the development of numerous zoospores accidentally lodged in one mass.

223. *Oe. lageniforme* Hirn.

(Pl. XX, fig. 187.)

1900, p. 291, Pl. XIII, fig. 68.

(?) Dioecious, macrandrous; oogonium 1, obpyriform (in section sometimes trinodulose), pore superior; oospore globose to ellipsoid, occupying the lower part of the oogonium, spore wall smooth; vegetative cell 11–13×45–90μ; oogonium 33–36×48–63μ; oospore 29–31×31–38μ.

Brazil.

In spite of the incomplete description this species is readily recognized by its inferiorly inflated oogonium and its relatively smaller oospore. It bears some resemblance to the monoecious *Oe. pseudoboscii* (No. 27).

224. *Oe. poecilosporum* Nordstedt and Hirn.

(Pl. XXXIV, fig. 305.)

In Hirn 1900, p. 208, Pl. XXIII, fig. 124.

Oogonium 1–2, ellipsoid to depressed-globose (sometimes globose or subglobose), operculate, division median, broad; oospore of same form as oogonium, which it nearly fills, spore wall smooth; terminal cell apically obtuse; vegetative cell 6–8×20–47μ; oogonium 24–28×25–38μ; oospore 23–26×21–28μ.

Africa.

Compare with *Oe. gunnii* (No. 101) and *Oe. psaegmatosporum* (No. 83).

225. *Oe. inflatum* Hallas.

(Pl. XXI, figs. 193 and 194.)

1905, p. 408, fig. 16; Hirn 1906, p. 16, Pl. 1, fig. 1.

(?) Dioecious; oogonium 1–2, often terminal, subglobose or ellipsoid-globose, poriferous, pore variable between supramedian and nearly
superior; oospore globose, not filling oogonium, spore wall smooth; basal cell elongate; vegetative cell of considerable variation in diameter, the terminal cell often narrow and produced into a long hyaline seta; vegetative cell 6–27×12–480µ; oogonium 37–49×54–76µ; oospore 28–35×28–35µ.

Denmark.

Cf. *Oe. tyrolicum* (No. 14) and *Oe. urbicum* (No. 11). The chief characteristics of *Oe. inflatum* are the variable position of the pore, the considerable variation in size of the vegetative cell, and the long, narrow hyaline setæ.

226. **Oe. warmingianum** Wittrock.

(Pl. XV, fig. 148.)

1878, p. 140; Hirn 1900, p. 290, Pl. XII, fig. 65.

Oogonium single, ellipsoid-ovoid, pore superior; oospore ellipsoid-globose, not filling oogonium in length, spore wall smooth; (? antheridium subepigynous); vegetative cell 8–9×32–63µ; oogonium 35×53µ; oospore 30×33µ.

Brazil.

It is impossible to determine with any degree of certainty the position of this species in the genus because of the very inadequate description.

227. **Oe. calvum** Wittrock.

(Pl. XXXIV, figs. 309 and 310.)

1874, p. 37; *Oe. vesicatum* Link in Rabenhorst Alg. Europe 1873; Hirn 1900, p. 316. Pl. L, fig. 323.

Oogonium 1–5, subdepressed-globose, operculate, division median; vegetative cell 7–9×22–40µ; oogonium 27–30×25–30µ.

India.

Cf. *Oe. poecilosporum* (No. 224), *Oe. latiusculum* (No. 81), and *Oe. pratense* (No. 80).

228. **Oe. inclusum** Hirn.

(Pl. XL, fig. 397.)

1895, p. 21, Pl. 1, fig. 4; 1900, p. 318, Pl. L, fig. 324; Fremy and Meslin 1926, p. 124, fig. 8.

Oogonium 1, suboblong-ellipsoid, wall thickened; oospore ellipsoid or suboblong-ellipsoid, not completing oogonium or sometimes enlarging it, spore wall slightly rugulose; basal cell elongate; vegetative cell 8–12×33–150µ; oogonium 24–30×48–55µ; oospore 18–23×38–48µ.

Finland, France.
229. *Oe. plicatum* Wittrock.

(PI. LVI, fig. 535.)

1874, p. 38; Hirn 1900, p. 310, Pl. XLVII, fig. 296; *Oe. rothii* Breb. in Rabenh. Alg. Eur. 2347, 1873.

India.

To be compared with *Oe. oelandicum* (No. 164), *Oe. megaporum* (No. 165), and *Oe. crenulatum* (No. 233).

230. *Oe. lagerstedtii* Wittrock.

(PI. LVI, figs. 536-538.)

1874, p. 38; Hirn 1900, p. 311, Pl. XLVII, fig. 306.

Oogonium 1–4, depressed-ovoid, medianly plicate, with 7–11 longitudinal ridges, operculate, division inframedian; oospore depressed-globose or subglobose, not filling oogonium, spore wall smooth; vegetative cell 5–8 × 10–48 μ; oogonium 16–23 × 13–17 μ; oospore 13–16 × 11–14 μ.

Finland, Sweden.

Cf. *Oe. platygynum* (No. 167).

231. *Oe. uleanum* Hirn.

(PI. LV, fig. 529.)

1900, p. 311, Pl. XLVIII, fig. 308; *Oe. sp.* Moebius 1895, p. 174, Pl. 2, figs. 11 and 12.

Oogonium 1–2, subpyriform, medianly plicate, with 7–9 longitudinal ridges, operculate, division inframedian; oospore globose or subglobose, not filling oogonium, spore wall smooth; vegetative cell 8–10 × 40–80 μ; oogonium 23–29 × 24–30 μ; oospore 18–22 × 18–25 μ.

Brazil.

Cf. *Oe. platygynum* (No. 167) and *Oe. lagerstedtii* above.

232. *Oe. pulchrum* Nordstedt and Hirn.

(PI. LVI, fig. 541.)

In Hirn 1900, p. 312, Pl. XLVIII, fig. 309.

(?) Dioecious-nannandrous; oogonium 1, depressed-pyriform, medianly plicate, with 7–10 longitudinal ridges, operculate, division inframedian; oospore globose or subglobose, not filling oogonium, spore wall smooth; (?) androsporangium 1–4, subepigynous or subhypogynous or rarely hypogynous; vegetative cell capitellate; terminal cell (often an oogonium) apically obtuse, vegetative cell 6–9 × 20–52 μ; suffultory cell 9–12 × 13–36 μ; oogonium 23–26 × 19–26 μ; oospore 18–23 × 16–22 μ; (?) androsporangium 7–8 × 7–8 μ.

Brazil.

Cf. *Oe. bahusiense* (No. 166) and *Oe. platygynum* (No. 167).
233. *Oedogonium crenulatum* Wittrock.

(Pl. LVI, figs. 532 and 533.)

1876, p. 49, Pl. 13, figs. 25-27; Hirn 1900, p. 309, Pl. XLVII, fig. 294.

Oogonium 1, broadly pyriform-globose or transversely ellipsoid, medianly plicate, with about 13 longitudinal ridges, operculate, division median, narrow but distinct; oospore depressed-globose, inflating oogonium, spore wall smooth; vegetative cell 6-8×30-55µ; oogonium 25-27×26-28µ; oospore 22-23×15-17µ.

Italy.

(Pl. LVI, fig. 534.)

1900, p. 309, Pl. XLVII, fig. 295; *Oe. crenulatum* Wittr. f. *graciliar* Nordst. 1888, p. 12.

Smaller; vegetative cell 4-5×13-10µ; oogonium 16-18×16-21µ; oospore 15-16×12-13µ.

New Zealand.

Cf. *Oe. plicatum* (No. 229), from which it is distinguished by its median position of the operculum.

234. *Oedogonium saxatile* Hansgirg.

1901, p. 1; Hirn 1906, p. 20.

In 1888 Hansgirg described *Oe. rufescens* var. *saxatile* as having an orange-red color and with these dimensions: vegetative cell 7-9(-12)×15-70µ; oogonium 18-24×24-36µ. Hirn (1900) considered this as a synonym of *Oe. rufescens* (No. 4). In 1901 Hansgirg, apparently feeling the variety to be distinct, gave it specific rank as *Oe. saxatile*, adding nothing to its description. It was found in several localities in Austria in a vegetative state on moist rock. *Oe. saxatile* may be distinct, but its description is at present too incomplete to warrant its retention as a distinct species, except as a matter of record. Vegetative cells red in color have been noted in a very few species of Bulbochaete, e. g., *B. sanguinea* (No. 50).

235. *Oedogonium reticulatum* West and West.

1902, p. 129; Hirn 1906, p. 19.

Vegetative cell elongate; oogonium ovoid-globose; oospore globose, not filling oogonium, spore wall areolate; vegetative cell 7-8×62-100µ; oogonium 37×41µ; oospore 25×25µ.

Ceylon.

To be compared with *Oe. arcyosporum* (No. 58) and *Oe. areolatum* (No. 59).
236. *Oe. reinschii* Roy.

(Pl. XLI, fig. 406.)

In Cooke 1884, p. 160, Pl. 57, fig. 23; *Cymatonema sp.* Reinsch 1875, p. xi, Pl. 6, fig. 1 (incorrectly *Cymatopleura*, p. 77); *Oe. sterile* Hansg. 1888, p. 43 and 260; Hirn 1900, p. 319, Pl. L, fig. 326; Lewis and Taylor 1928, p. 193, text figs. 3 and 4.

Vegetative cell subhexagonal or subellipsoid, sometimes nearly cylindrical; basal cell subhemispherical; apical cell obtuse; vegetative cell 6–9 (–11) ×8–24μ; basal cell 8–9×5–6μ.

United States: Michigan, Florida, New York, Massachusetts; Brazil, Paraguay; Austria, England, France, Germany, Scotland, Sweden.

This species, though as yet never found in fruit, is readily recognized by its peculiar vegetative cells. Among the typically hexagonal and ellipsoid cells nearly always can be found regularly cylindrical cells.
TABLE III.

Alphabetical list of synonyms. The numbers indicate the species of Bulbochaete in the text considered synonymous, or under which they are discussed. If the number is preceded by a question mark, the synonym is considered very doubtful and cannot be definitely authenticated.

<table>
<thead>
<tr>
<th>Bulbochaete</th>
<th>No.</th>
<th>Bulbochaete</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>anomal Pringsh.</td>
<td>?46</td>
<td>pygmaea Wittr.</td>
<td>34</td>
</tr>
<tr>
<td>brebissonii Kuetz. f.</td>
<td>? 9a</td>
<td>pygmaea a. major Pringsh.</td>
<td>38a</td>
</tr>
<tr>
<td>canbyii Wood</td>
<td>?23</td>
<td>pygmaea b. minor Pringsh.</td>
<td>34</td>
</tr>
<tr>
<td>crenulata Pringsh. v. plena Wittr.</td>
<td>11</td>
<td>rectangularis Wittr. v. lunellii Wittr.</td>
<td>36</td>
</tr>
<tr>
<td>crenulata Pringsh. v. supramediana Wittr.</td>
<td>12</td>
<td>rectangularis Wittr. v. tenuis Wittr.</td>
<td>35</td>
</tr>
<tr>
<td>dumosa Wood</td>
<td>?38a</td>
<td>rectangularis Wittr. v. norvegica Wittr.</td>
<td>35</td>
</tr>
<tr>
<td>elachistandria Wittr.</td>
<td>?12</td>
<td>reticulata Nordst. v. minor reticulata Nordst.</td>
<td>46a</td>
</tr>
<tr>
<td>elachistandria Wittr.</td>
<td>?14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ellippospora West.</td>
<td>?27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gracilis Pringsh.</td>
<td>6b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ignota Wood</td>
<td>?37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intermedia Pringsh</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intermedia DeBary f. americana Hirn</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intermedia DeBary f. supramediana (Wittr.) Hirn</td>
<td>12a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intermedia DeBary v. depressa Hirn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minor Al. Br.</td>
<td>41a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>minor Al. Br.</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mirabilis Wittr. v. lapponica Wittr. and Lund</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mirabilis Wittr. v. immersa Wittr.</td>
<td>6a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nana Wittr.</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nana Wittr. v. subbasispora Wittr.</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pachyderma Reinsch.</td>
<td>?46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pringsheimiana Archer.</td>
<td>?46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONFERVA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>setigera Roth</td>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE IV.

Alphabetical list of synonyms for the genus Oedogonium. The numbers indicate the species or varieties in the text considered synonymous, or under which they are discussed. If the number is preceded by a question mark, the synonym is considered very doubtful and cannot be definitely authenticated.

<table>
<thead>
<tr>
<th>Oedogonium</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>acrosorum f. connectens Wittr.</td>
<td>195</td>
</tr>
<tr>
<td>acrosorum v. boreale Wolle...</td>
<td>195a</td>
</tr>
<tr>
<td>africanum Lagerh.</td>
<td>200</td>
</tr>
<tr>
<td>altenburgi Kirch.</td>
<td>113</td>
</tr>
<tr>
<td>amphium Magn. and Wille...</td>
<td>49a</td>
</tr>
<tr>
<td>angulosum Hallas...</td>
<td>132a</td>
</tr>
<tr>
<td>apiculatum Wolle...</td>
<td>? 57</td>
</tr>
<tr>
<td>apophysatum Al. Br...</td>
<td>138</td>
</tr>
<tr>
<td>apophysatum Al. Br...</td>
<td>150</td>
</tr>
<tr>
<td>apophysatum Al. Br...</td>
<td>151</td>
</tr>
<tr>
<td>apophysatum Pringsh.</td>
<td>151</td>
</tr>
<tr>
<td>archemim Cooke...</td>
<td>171c</td>
</tr>
<tr>
<td>arechavaleta Wittr.</td>
<td>142a</td>
</tr>
<tr>
<td>areschougii f. major Collins</td>
<td>160b</td>
</tr>
<tr>
<td>bathmidosporum Nordst.</td>
<td>195b</td>
</tr>
<tr>
<td>bernardense Bates</td>
<td>141c</td>
</tr>
<tr>
<td>berolinense Wittr.</td>
<td>154</td>
</tr>
<tr>
<td>birmanicum Wittr.</td>
<td>188</td>
</tr>
<tr>
<td>birmanicum Wittr.</td>
<td>188</td>
</tr>
<tr>
<td>borisiaum Wittr.</td>
<td>13s</td>
</tr>
<tr>
<td>calcareae v. gadiatum Lewin...</td>
<td>132</td>
</tr>
<tr>
<td>calosporum Hirn...</td>
<td>57c</td>
</tr>
<tr>
<td>candollii (Le Cl.) Breb...</td>
<td>24</td>
</tr>
<tr>
<td>capillare Kuetz...</td>
<td>35</td>
</tr>
<tr>
<td>capillare v. flavescens...</td>
<td>35</td>
</tr>
<tr>
<td>capilliforme v. australis f.</td>
<td>37d</td>
</tr>
<tr>
<td>diversum Hirn...</td>
<td>37d</td>
</tr>
<tr>
<td>capilliforme v. australis f.</td>
<td>37d</td>
</tr>
<tr>
<td>aherosporum Hirn...</td>
<td>37c</td>
</tr>
<tr>
<td>carbonicium Wittr.</td>
<td>15c</td>
</tr>
<tr>
<td>cardiacum Wittr.</td>
<td>15</td>
</tr>
<tr>
<td>cataractum Wolle...</td>
<td>142c</td>
</tr>
<tr>
<td>ciliare De Not...</td>
<td>95b</td>
</tr>
<tr>
<td>citatium Pringsh.</td>
<td>185</td>
</tr>
<tr>
<td>cleveanum v. arvensis Isthv...</td>
<td>154</td>
</tr>
<tr>
<td>cleveanum f. exoticum Hirn...</td>
<td>154</td>
</tr>
<tr>
<td>concalvanum Wittr.</td>
<td>154</td>
</tr>
<tr>
<td>concalvanum f. luxurians Breb...</td>
<td>150</td>
</tr>
<tr>
<td>concalvanum v. lugenarioides...</td>
<td>151</td>
</tr>
<tr>
<td>Filari...</td>
<td>151</td>
</tr>
<tr>
<td>condensatum Hallas...</td>
<td>144a</td>
</tr>
<tr>
<td>crassipellitum West...</td>
<td>142b</td>
</tr>
<tr>
<td>crassum Wittr.</td>
<td>49</td>
</tr>
<tr>
<td>crenulatum f. gracilis Nordst.</td>
<td>233a</td>
</tr>
<tr>
<td>crispulum Wol. and Nordst.</td>
<td>178</td>
</tr>
<tr>
<td>crispulum v. minutum Hansg...</td>
<td>179a</td>
</tr>
<tr>
<td>crispum v. elongatum Wittr.</td>
<td>109</td>
</tr>
<tr>
<td>crispum f. gracilis Wittr...</td>
<td>109e</td>
</tr>
<tr>
<td>crispum v. granulosum Nordst...</td>
<td>109a</td>
</tr>
<tr>
<td>crispyum v. uruguayense f. pro-</td>
<td>109e</td>
</tr>
<tr>
<td>prium Hirnr...</td>
<td>109</td>
</tr>
<tr>
<td>crispyum f. vernale (Hass.)...</td>
<td>109</td>
</tr>
<tr>
<td>cryptoporurn vulgaris abbrevi-</td>
<td>169</td>
</tr>
<tr>
<td>atia Gutw...</td>
<td>169</td>
</tr>
<tr>
<td>crytoporum v. subdepressum...</td>
<td>169</td>
</tr>
<tr>
<td>cyanisterum v. ornatum Wittr...</td>
<td>149b</td>
</tr>
<tr>
<td>cyanisterum v. rufescens Istan.</td>
<td>149</td>
</tr>
<tr>
<td>debarystum Chmiel...</td>
<td>37a</td>
</tr>
<tr>
<td>delicatulum Kuetz...</td>
<td>? 16a</td>
</tr>
<tr>
<td>dundracies Carter...</td>
<td>? 25</td>
</tr>
<tr>
<td>diosicium Petrov...</td>
<td>37</td>
</tr>
<tr>
<td>echinatum Wittr...</td>
<td>147</td>
</tr>
<tr>
<td>eremium Hallas...</td>
<td>184d</td>
</tr>
<tr>
<td>engenorum Wittr...</td>
<td>95b</td>
</tr>
<tr>
<td>exiguum Elv...</td>
<td>4a</td>
</tr>
<tr>
<td>fioniella Hallas...</td>
<td>181e</td>
</tr>
<tr>
<td>flavescens Wittr...</td>
<td>133</td>
</tr>
<tr>
<td>flavescens v. gynandrosporum...</td>
<td>133</td>
</tr>
<tr>
<td>fonicola v. flavescens Hansg...</td>
<td>? 183</td>
</tr>
<tr>
<td>gemelliparum Pringsh...</td>
<td>45a</td>
</tr>
<tr>
<td>gemelliparum v. majus Wittr...</td>
<td>48</td>
</tr>
<tr>
<td>grande v. aquatoriale f. hor-</td>
<td>45b</td>
</tr>
<tr>
<td>tense Wittr...</td>
<td>45b</td>
</tr>
<tr>
<td>grande f. robustum Hirn...</td>
<td>45d</td>
</tr>
<tr>
<td>grande v. robustum (Hirn)...</td>
<td>45d</td>
</tr>
<tr>
<td>Tiffany...</td>
<td>45d</td>
</tr>
<tr>
<td>bajnienese Hallas...</td>
<td>132a</td>
</tr>
<tr>
<td>hexagonum Kuetz...</td>
<td>135</td>
</tr>
<tr>
<td>hispanicum Lewin...</td>
<td>109</td>
</tr>
<tr>
<td>hohenackerii Wittr...</td>
<td>184c</td>
</tr>
<tr>
<td>hormosporum West...</td>
<td>149e</td>
</tr>
<tr>
<td>huillense West...</td>
<td>118</td>
</tr>
<tr>
<td>insignis v. minus Hirn...</td>
<td>15a</td>
</tr>
<tr>
<td>intermediate Kuetz...</td>
<td>183</td>
</tr>
<tr>
<td>inversum v. subclausum Wittr...</td>
<td>77</td>
</tr>
<tr>
<td>inversum f. subclausum (Wittr.)</td>
<td>77</td>
</tr>
<tr>
<td>Hirn...</td>
<td>77</td>
</tr>
<tr>
<td>kjellmani Wittr...</td>
<td>54</td>
</tr>
<tr>
<td>klebahnii Lemm...</td>
<td>200</td>
</tr>
<tr>
<td>lagerheimii Wittr...</td>
<td>109c</td>
</tr>
<tr>
<td>landsboroughi Wittr...</td>
<td>48</td>
</tr>
<tr>
<td>landsboroughi v. gemelliparum</td>
<td>45a</td>
</tr>
<tr>
<td>(Pringsh.) Wittr...</td>
<td>45a</td>
</tr>
<tr>
<td>landsboroughi v. robustum Wittr.</td>
<td>18a</td>
</tr>
</tbody>
</table>
Table of Synonyms

Table IV—(Continued).

<table>
<thead>
<tr>
<th>Oedogonium</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>londinense v. compressum West.</td>
<td>171c</td>
</tr>
<tr>
<td>longicolle v. seneagalese f. afghanicum Schaarsch.</td>
<td>166a</td>
</tr>
<tr>
<td>lorentzii Magn. and Wille</td>
<td>37b</td>
</tr>
<tr>
<td>lunellii Wittr.</td>
<td>4b</td>
</tr>
<tr>
<td>ludense Wittr.</td>
<td>184c</td>
</tr>
<tr>
<td>ludense Wittr.</td>
<td>?184b</td>
</tr>
<tr>
<td>macrandrium v. aemulans Him.</td>
<td>184b</td>
</tr>
<tr>
<td>macropremium f. patagonicum Borge and Him.</td>
<td>95b</td>
</tr>
<tr>
<td>maximum West.</td>
<td>41a</td>
</tr>
<tr>
<td>monandrouste Carter.</td>
<td>? 25</td>
</tr>
<tr>
<td>montaguei v. submarum Wittr.</td>
<td>183</td>
</tr>
<tr>
<td>montaguei v. saxicolum Wittr.</td>
<td>183</td>
</tr>
<tr>
<td>monticchii Fior.-Mazz.</td>
<td>77</td>
</tr>
<tr>
<td>neglectum Him.</td>
<td>27</td>
</tr>
<tr>
<td>nordstedtii Wittr.</td>
<td>209a</td>
</tr>
<tr>
<td>oblongum v. majus Nordst.</td>
<td>116a</td>
</tr>
<tr>
<td>obtusatum v. obtatum Tilden.</td>
<td>?160b</td>
</tr>
<tr>
<td>ochroleucum Kuetz.</td>
<td>6</td>
</tr>
<tr>
<td>oelandicum v. subpyriforme Wittr.</td>
<td>165</td>
</tr>
<tr>
<td>ornatum Him.</td>
<td>149</td>
</tr>
<tr>
<td>pachydermatosporum Nordst.</td>
<td>95b</td>
</tr>
<tr>
<td>pachydermatosporum Nordst.</td>
<td>95b</td>
</tr>
<tr>
<td>paludosum Wittr.</td>
<td>53</td>
</tr>
<tr>
<td>paludosum (Hass.) Kuetz.</td>
<td>26</td>
</tr>
<tr>
<td>piliferum Wittr.</td>
<td>86</td>
</tr>
<tr>
<td>piliferum Auerw.</td>
<td>185</td>
</tr>
<tr>
<td>platygynum f. major West.</td>
<td>167</td>
</tr>
<tr>
<td>polymorphum Wolle</td>
<td>10</td>
</tr>
<tr>
<td>princeps Wittr.</td>
<td>38</td>
</tr>
<tr>
<td>pringsheimiana Archer</td>
<td>? 53b</td>
</tr>
<tr>
<td>pringsheimii v. nordsedtii f. pachydermatosporum (Nordst.) Him.</td>
<td>95</td>
</tr>
<tr>
<td>pringsheimii v. nordsedtii f. engancorum (Wittr.) Him.</td>
<td>95b</td>
</tr>
<tr>
<td>pringsheimii v. varians Nordst.</td>
<td>95b</td>
</tr>
<tr>
<td>propinquum Wittr.</td>
<td>184d</td>
</tr>
<tr>
<td>punctato-striatum v. minor Wittr.</td>
<td>84</td>
</tr>
<tr>
<td>pyrulum v. obesum Wittr.</td>
<td>108</td>
</tr>
<tr>
<td>rhodosporum (Welw.) Wittr.</td>
<td>208</td>
</tr>
<tr>
<td>rivulare Al. Br.</td>
<td>42</td>
</tr>
<tr>
<td>rivulare v. major Wolle</td>
<td>40a</td>
</tr>
<tr>
<td>rostellatum Pringsh.</td>
<td>109</td>
</tr>
<tr>
<td>rostellatum Pringsh.</td>
<td>109b</td>
</tr>
<tr>
<td>rothii Breb.</td>
<td>4b</td>
</tr>
<tr>
<td>rothii Pringsh.</td>
<td>169</td>
</tr>
<tr>
<td>rothii f. major West.</td>
<td>171</td>
</tr>
<tr>
<td>rufescens f. exiguum (Elv.) Him.</td>
<td>4a</td>
</tr>
<tr>
<td>rufescens subsp. lundellii (Wittr.) Him.</td>
<td>4b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oedogonium</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>rufescens subsp. lundellii f. elongatum Him.</td>
<td>4b</td>
</tr>
<tr>
<td>seriosporum Lagerh.</td>
<td>209a</td>
</tr>
<tr>
<td>setigerum Vaup.</td>
<td>138</td>
</tr>
<tr>
<td>spelsbergense Wittr.</td>
<td>? 3a</td>
</tr>
<tr>
<td>sphaericum Hallas.</td>
<td>116b</td>
</tr>
<tr>
<td>spinospermum Reinsch.</td>
<td>?136</td>
</tr>
<tr>
<td>sprogranulatum Schm.</td>
<td>84</td>
</tr>
<tr>
<td>stagnale Kuetz.</td>
<td>35</td>
</tr>
<tr>
<td>stagnale Kuetz.</td>
<td>35a</td>
</tr>
<tr>
<td>stagnale v. variabilis Lewin.</td>
<td>40</td>
</tr>
<tr>
<td>stortle Hansg.</td>
<td>236</td>
</tr>
<tr>
<td>subpisanum Lewin.</td>
<td>99</td>
</tr>
<tr>
<td>subcapitellatum Him.</td>
<td>105</td>
</tr>
<tr>
<td>tapeinosporum v. angolense West and West.</td>
<td>196</td>
</tr>
<tr>
<td>trichosporum Itzigs.</td>
<td>? 9</td>
</tr>
<tr>
<td>tumidulum Pringsh.</td>
<td>11</td>
</tr>
<tr>
<td>tumidulum (Roth).</td>
<td>29</td>
</tr>
<tr>
<td>tumidulum Kuetz.</td>
<td>48</td>
</tr>
<tr>
<td>undulatum Al. Br.</td>
<td>119</td>
</tr>
<tr>
<td>undulatum v. interrupte-incisum Schroed.</td>
<td>119</td>
</tr>
<tr>
<td>undulatum v. moebusi Schmid.</td>
<td>119</td>
</tr>
<tr>
<td>undulatum v. senegalese Nordst.</td>
<td>119b</td>
</tr>
<tr>
<td>urbicium v. osiforme Lewin</td>
<td>30</td>
</tr>
<tr>
<td>vaucheriia Braun</td>
<td>? 25</td>
</tr>
<tr>
<td>vaucheriia Al. Br.; Wittr. f. insulare Him.</td>
<td>25</td>
</tr>
<tr>
<td>vernale Wittr.</td>
<td>109</td>
</tr>
<tr>
<td>vernale Wittr.</td>
<td>12</td>
</tr>
<tr>
<td>vesicatum Link</td>
<td>171</td>
</tr>
<tr>
<td>vesicatum Link</td>
<td>227</td>
</tr>
<tr>
<td>vesicatum Wittr.</td>
<td>205</td>
</tr>
<tr>
<td>vesicatum v. flavescens Kuetz.</td>
<td>106b</td>
</tr>
<tr>
<td>vesicatum v. fuscescens Dupray.</td>
<td>155</td>
</tr>
<tr>
<td>villocobianum Him.</td>
<td>145a</td>
</tr>
<tr>
<td>wolleiuanum v. insigne Nordst.</td>
<td>150b</td>
</tr>
</tbody>
</table>

Androgynia

<table>
<thead>
<tr>
<th>Androgynia</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>echinata Wood.</td>
<td>147</td>
</tr>
<tr>
<td>huntii Wood.</td>
<td>152</td>
</tr>
<tr>
<td>mirabilis Wood.</td>
<td>?188</td>
</tr>
<tr>
<td>multispora Wood.</td>
<td>143</td>
</tr>
</tbody>
</table>

Conferva

<table>
<thead>
<tr>
<th>Conferva</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>capillare L.</td>
<td>33</td>
</tr>
<tr>
<td>tumidula Eng. Bot.</td>
<td>73</td>
</tr>
<tr>
<td>undulata Breb.</td>
<td>119</td>
</tr>
<tr>
<td>vesicata Ag.</td>
<td>55</td>
</tr>
<tr>
<td>vesicata Lyng.</td>
<td>205</td>
</tr>
</tbody>
</table>
TABLE IV—(Continued).

<table>
<thead>
<tr>
<th>Cymatoneema</th>
<th>No.</th>
<th>Vesiculifera</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>confervaceum Kuetz.</td>
<td>119</td>
<td>aurea Hass.</td>
<td>138</td>
</tr>
<tr>
<td>borissii Hass.</td>
<td>138</td>
<td>candolleti Hass.</td>
<td>109</td>
</tr>
<tr>
<td>capillaris Hass.</td>
<td>38</td>
<td>cardiaca Hass.</td>
<td>15</td>
</tr>
<tr>
<td>ciliata Hass.</td>
<td>155</td>
<td>compressa Hass.</td>
<td>5</td>
</tr>
<tr>
<td>concatenata Hass.</td>
<td>151</td>
<td>crispa Hass.</td>
<td>109</td>
</tr>
<tr>
<td>inaequalis Wood</td>
<td>? 15</td>
<td>crassa Hass.</td>
<td>? 49</td>
</tr>
<tr>
<td>dissiliens Hass.</td>
<td>? 183</td>
<td>flavescens Hass.</td>
<td>? 133</td>
</tr>
<tr>
<td>landsboroughi Hass.</td>
<td>48</td>
<td>paludosa Hass.</td>
<td>53</td>
</tr>
<tr>
<td>princeps Hass.</td>
<td>38</td>
<td>pulchella Hass.</td>
<td>15b</td>
</tr>
<tr>
<td>rothii Le Cl.</td>
<td>? 169</td>
<td>vernalis Hass.</td>
<td>? 109</td>
</tr>
<tr>
<td>vaucheri Le Cl.</td>
<td>? 25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
bibliography

agardh, c. a. 1817. synopsis algarum scandinaviae, adjuncta dispositione universali algarum. pp. i-xl; 1-135. lund.

archer, w. 1866. description of bulbochaete pringsheimiana n. sp. quar. jour. micros. sci. 6:121-123.

bates, f. 1880. catalogue of the algae of leicestershire. flora of leicestershire, including the cryptogams, with maps of the county. leicester literary and philos. soc. 400 pp. 2 col. maps.

blackman, f. f., and a. g. tansley. 1902. a revision of the classification of the green algae. new phytol. 1:17-24; et seq.

borge, o. 1896. ausstraliane susswasser-chlorophyceen. bihang till k. svenska vet.-akad. handlingar, stockholm. 22 (pt. 111, no. 9):1-32. pl. 1-iv, figs. 1-66

borge, o. 1899. ueber tropische und subtropische susswasser-chlorophyceen. bihang till k. svenska vet.-akad. handlingar 24 (12):33 pp. pl. 2.

borge, o. 1911: algologische notizen 6-7. botaniska notiser 1911:197-244. pl. 2, fig. 10.

borge, o. 1925. die von dr. f. c. hoehne wahrend der expedition roosevelt-rondon gesammelten susswasser-algen. archiv fur botanik 19 (17):1-50. 6 pls.

bory, j. b. de st. vincent. 1822. dict. classique d'hist. naturelle. vol. 1, 604 pp. paris.

braun, a. 1849/50. betrachtungen uber die erscheinung der verjungung in der natur. i-xvi; 1-363 pp. freiburg.

braun, a. 1855. ueber chytridium. abh. k. akad. wissensch. zu berlin 1855: 21-84. pl. i-vi, 116 figs.

carter, h. j. 1858. on specific character, fecundation, and abnormal development in oedogonium. the annals and mag. of nat. hist. 1 (series 3):29-30. pl. 111, figs. 1-16.

chmielewsky, v. 1889. diagnoses algarum novarum. travaux de la societe de naturel a l'universite de kharkow.

cleve, a. 1893. en ro'd bulbochaete. botaniska notiser 1893:247.

collins, f. s. 1918a. notes from the woods hole laboratory—1917. rhodora 20: 141-143. pl. 124, figs. 1-3.

De Notaris, G. 1868. In Hedwigia 1868 (7):120.

Hodgetts, W. J. 1921. A study of some of the factors controlling the periodicity of freshwater algae in nature. New Phytol. 29: 150-164; 195-227; et seq.

Hooker, J. D. 1860. Flora Tasmaniae. Vol. II. The Botany of the Antarctic voyage of H. M. Discovery Ships Erebus and Terror in the years 1839–43.

Kirkner, O. 1878. Kryptogamenflora von Schlesien. Im Namen der Schlesiische Gesellschaft für Vaterland. 2 (1)

The Oedogoniaceae

BIBLIOGRAPHY

West, G. S. 1912a. Algological notes. X. Jour. of Bot. 50: 321-325. Fig. 1.

EXSICCATAE

Areschoug, J. E. Algae Scandinavicae exsiccate. Upsala.
BULBOCHAETE

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>affinis Hirn.</td>
<td>48</td>
</tr>
<tr>
<td>alabamensis Transeau and Brown</td>
<td>40</td>
</tr>
<tr>
<td>angulosa Wittr. and Lund</td>
<td>36</td>
</tr>
<tr>
<td>f. picta Him.</td>
<td>37</td>
</tr>
<tr>
<td>anomala Pringsh.</td>
<td>48</td>
</tr>
<tr>
<td>basispora Wittr. and Lund</td>
<td>31</td>
</tr>
<tr>
<td>borealis Wittr.</td>
<td>37</td>
</tr>
<tr>
<td>brebissonii Kuetz</td>
<td>33</td>
</tr>
<tr>
<td>v. minor Woron.</td>
<td>34</td>
</tr>
<tr>
<td>brevifulta Wittr.</td>
<td>50</td>
</tr>
<tr>
<td>bullardi Trans. and Tiff.</td>
<td>47</td>
</tr>
<tr>
<td>congener Hirn.</td>
<td>42</td>
</tr>
<tr>
<td>crassa Pringsh.</td>
<td>41</td>
</tr>
<tr>
<td>creassinuscula Nordst.</td>
<td>34</td>
</tr>
<tr>
<td>crenulata Pringsh.</td>
<td>34</td>
</tr>
<tr>
<td>debariana Wittr. and Lund</td>
<td>31</td>
</tr>
<tr>
<td>denticulata Wittr.</td>
<td>48</td>
</tr>
<tr>
<td>diamesandria Nordst. and Hirn</td>
<td>38</td>
</tr>
<tr>
<td>dispar Wittr.</td>
<td>40</td>
</tr>
<tr>
<td>v. ripartiana Wittr.</td>
<td>41</td>
</tr>
<tr>
<td>doliformis Borge.</td>
<td>43</td>
</tr>
<tr>
<td>elachistandria Wittr.</td>
<td>39</td>
</tr>
<tr>
<td>elatior Pringsh.</td>
<td>32</td>
</tr>
<tr>
<td>f. pumila Him.</td>
<td>33</td>
</tr>
<tr>
<td>v. scrobiculata Tiffany</td>
<td>33</td>
</tr>
<tr>
<td>furbera Collins</td>
<td>34</td>
</tr>
<tr>
<td>gigantea Pringsh.</td>
<td>38</td>
</tr>
<tr>
<td>horrida Nordst.</td>
<td>50</td>
</tr>
<tr>
<td>imperialis Wittr.</td>
<td>49</td>
</tr>
<tr>
<td>v. regalis Wittr.</td>
<td>49</td>
</tr>
<tr>
<td>insignis Pringsh.</td>
<td>48</td>
</tr>
<tr>
<td>v. recticulata (Nord.) Hirn</td>
<td>49</td>
</tr>
<tr>
<td>intermedia De Bary</td>
<td>33</td>
</tr>
<tr>
<td>v. depressa Wittr.</td>
<td>35</td>
</tr>
<tr>
<td>lagoensis Wittr.</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>megastoma Wittr. and Lund</td>
<td>31</td>
</tr>
<tr>
<td>minor Al. Br.</td>
<td>47</td>
</tr>
<tr>
<td>v. germanica Hirn</td>
<td>47</td>
</tr>
<tr>
<td>minuta West and West.</td>
<td>33</td>
</tr>
<tr>
<td>mirabilis Wittr.</td>
<td>32</td>
</tr>
<tr>
<td>f. immersa (Wittr.) Hirn</td>
<td>32</td>
</tr>
<tr>
<td>v. gracilis (Pringsh.) Hirn</td>
<td>32</td>
</tr>
<tr>
<td>monile Wittr. and Lund.</td>
<td>30</td>
</tr>
<tr>
<td>v. robusta Hirn.</td>
<td>30</td>
</tr>
<tr>
<td>nana Wittr.</td>
<td>30</td>
</tr>
<tr>
<td>nordstedtii Wittr.</td>
<td>37</td>
</tr>
<tr>
<td>f. suberecta Collins.</td>
<td>37</td>
</tr>
<tr>
<td>v. minor Woron.</td>
<td>37</td>
</tr>
<tr>
<td>obliqua Lund.</td>
<td>39</td>
</tr>
<tr>
<td>polyandria Cleve</td>
<td>38</td>
</tr>
<tr>
<td>f. notabilis Hirn.</td>
<td>38</td>
</tr>
<tr>
<td>punctulata (Nord.) Hirn</td>
<td>41</td>
</tr>
<tr>
<td>pygmaea Pringsh. Wittr.</td>
<td>43</td>
</tr>
<tr>
<td>pyrulum Lund.</td>
<td>43</td>
</tr>
<tr>
<td>quadrauta Wittr.</td>
<td>42</td>
</tr>
<tr>
<td>rectangularis Wittr.</td>
<td>45</td>
</tr>
<tr>
<td>v. hiloensis Nordst.</td>
<td>45</td>
</tr>
<tr>
<td>repanda Wittr.</td>
<td>44</td>
</tr>
<tr>
<td>rhadinospora Wittr.</td>
<td>46</td>
</tr>
<tr>
<td>f. antiqua (Nord.) Hirn</td>
<td>46</td>
</tr>
<tr>
<td>v. littoralis Hirn.</td>
<td>47</td>
</tr>
<tr>
<td>sanguinea Hansg.</td>
<td>50</td>
</tr>
<tr>
<td>sessilis Wittr.</td>
<td>39</td>
</tr>
<tr>
<td>f. glabra Hirn.</td>
<td>39</td>
</tr>
<tr>
<td>setigera (Roth) Agard.</td>
<td>40</td>
</tr>
<tr>
<td>spirigranulata West and West</td>
<td>49</td>
</tr>
<tr>
<td>subintermedia Eliv.</td>
<td>36</td>
</tr>
<tr>
<td>tenuis (Wittr.) Hirn.</td>
<td>43</td>
</tr>
<tr>
<td>v. norvegica (Wittr.) Hirn</td>
<td>44</td>
</tr>
<tr>
<td>valida Wittr.</td>
<td>42</td>
</tr>
<tr>
<td>varians Wittr.</td>
<td>45</td>
</tr>
<tr>
<td>v. hawaiensis Nordst.</td>
<td>46</td>
</tr>
<tr>
<td>v. subsimplex (Wittr.) Hirn</td>
<td>45</td>
</tr>
</tbody>
</table>

OEDOCLADIUM

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>albemarlensis Lewis</td>
<td>51</td>
</tr>
<tr>
<td>hazenii Lewis.</td>
<td>52</td>
</tr>
<tr>
<td>media Lewis.</td>
<td>52</td>
</tr>
<tr>
<td>protonema Stahl.</td>
<td>51</td>
</tr>
</tbody>
</table>

New species, varieties, and forms or new combinations are indicated by an asterisk.
<table>
<thead>
<tr>
<th>Page</th>
<th>OEDOGONIUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>acmandrium Elv.</td>
</tr>
<tr>
<td>107</td>
<td>acrosporum De Bary</td>
</tr>
<tr>
<td>156</td>
<td>f. boreale (Wolle) Hirn</td>
</tr>
<tr>
<td>158</td>
<td>v. b. nidosporum (Nord.) Hirn</td>
</tr>
<tr>
<td>158</td>
<td>v. floridense Wolle</td>
</tr>
<tr>
<td>160</td>
<td>v. majusculum Nordst.</td>
</tr>
<tr>
<td>115</td>
<td>alblstrandi Witt.</td>
</tr>
<tr>
<td>128</td>
<td>alternans Witt. and Lund.</td>
</tr>
<tr>
<td>130</td>
<td>americanum Transeau</td>
</tr>
<tr>
<td>140</td>
<td>angustissimum West and West</td>
</tr>
<tr>
<td>94</td>
<td>anomalous Hirn</td>
</tr>
<tr>
<td>94</td>
<td>arcyosporum Nord. and Hirn</td>
</tr>
<tr>
<td>142</td>
<td>areolatum Lagerh.</td>
</tr>
<tr>
<td>140</td>
<td>areschougui Witt.</td>
</tr>
<tr>
<td>144</td>
<td>v. americanum Tiffany</td>
</tr>
<tr>
<td>144</td>
<td>f. robustum Hirn</td>
</tr>
<tr>
<td>98</td>
<td>argentum Hirn</td>
</tr>
<tr>
<td>97</td>
<td>*f. michiganese Tiffany</td>
</tr>
<tr>
<td>133</td>
<td>armigerum Hirn</td>
</tr>
<tr>
<td>120</td>
<td>aster Witt.</td>
</tr>
<tr>
<td>99</td>
<td>australianum Hirn</td>
</tr>
<tr>
<td>112</td>
<td>autumnale Witt.</td>
</tr>
<tr>
<td>142</td>
<td>bahuniensc Nordst.</td>
</tr>
<tr>
<td>139</td>
<td>bengalense Hirn</td>
</tr>
<tr>
<td>83</td>
<td>biforme Nordst.</td>
</tr>
<tr>
<td>105</td>
<td>bohemicum Hirn</td>
</tr>
<tr>
<td>147</td>
<td>boreale Hirn</td>
</tr>
<tr>
<td>128</td>
<td>borisianum (Le Cl.) Witt.</td>
</tr>
<tr>
<td>128</td>
<td>v. westii Tiffany and Brown</td>
</tr>
<tr>
<td>91</td>
<td>boscii (Le Cl.) Witt.</td>
</tr>
<tr>
<td>91</td>
<td>f. dispar Hirn</td>
</tr>
<tr>
<td>92</td>
<td>v. notabile Lemm</td>
</tr>
<tr>
<td>92</td>
<td>v. occidentale Hirn</td>
</tr>
<tr>
<td>125</td>
<td>brasiliense Borge</td>
</tr>
<tr>
<td>215</td>
<td>braunii Kuetz.; Pringsh.</td>
</tr>
<tr>
<td>125</td>
<td>v. haunensc (Hallas) Hirn.</td>
</tr>
<tr>
<td>125</td>
<td>v. zehneri Tiffany</td>
</tr>
<tr>
<td>127</td>
<td>calcareum Cleve</td>
</tr>
<tr>
<td>169</td>
<td>calcum Witt.</td>
</tr>
<tr>
<td>106</td>
<td>capenese Nordst. and Hirn</td>
</tr>
<tr>
<td>80</td>
<td>capillare (L.) Kuetz.</td>
</tr>
<tr>
<td>80</td>
<td>f. stagnale (Ktz.; Wittr.) Hirn</td>
</tr>
<tr>
<td>81</td>
<td>capilliforme Kuetz.; Wittr.</td>
</tr>
<tr>
<td>81</td>
<td>f. debaryanum (Chmiel.) Hirn</td>
</tr>
<tr>
<td>81</td>
<td>f. lorentii (M. and W.) Hirn</td>
</tr>
<tr>
<td>82</td>
<td>v. austral Witt.</td>
</tr>
<tr>
<td>82</td>
<td>v. diversum (Hirn) Tiffany</td>
</tr>
<tr>
<td>104</td>
<td>capitellatum Witt.</td>
</tr>
<tr>
<td>70</td>
<td>cardiacum (Hass.) Wittr.</td>
</tr>
<tr>
<td>71</td>
<td>f. interjectum Hirn</td>
</tr>
<tr>
<td>71</td>
<td>f. pulchellum (Hass.) Hirn</td>
</tr>
<tr>
<td>71</td>
<td>v. carbonicum Witt.</td>
</tr>
<tr>
<td>71</td>
<td>v. minus Lemm</td>
</tr>
<tr>
<td>153</td>
<td>ciliatum (Hass.) Pringsh.</td>
</tr>
<tr>
<td>145</td>
<td>claratum Hallas</td>
</tr>
<tr>
<td>138</td>
<td>cleveanum Witt.</td>
</tr>
<tr>
<td>138</td>
<td>f. exoticum Hirn</td>
</tr>
<tr>
<td>136</td>
<td>concatenatum (Hass.) Wittr.</td>
</tr>
<tr>
<td>136</td>
<td>f. hutchinsiae (Witt.) Hirn</td>
</tr>
<tr>
<td>137</td>
<td>v. rectangularis Rich.</td>
</tr>
<tr>
<td>167</td>
<td>conferirum Hirn</td>
</tr>
<tr>
<td>173</td>
<td>consociatum Collins and Hervey</td>
</tr>
<tr>
<td>142</td>
<td>conrotum Hallas</td>
</tr>
<tr>
<td>146</td>
<td>*costatum Transeau</td>
</tr>
<tr>
<td>129</td>
<td>crassissicum Wittr.</td>
</tr>
<tr>
<td>130</td>
<td>v. arechavaleae (Wtr.) Hirn</td>
</tr>
<tr>
<td>130</td>
<td>v. idioandrosorum Nor. & Witt.</td>
</tr>
<tr>
<td>130</td>
<td>*v. cataractum (Wolle) Tiff.</td>
</tr>
<tr>
<td>88</td>
<td>crassum (Hass.) Wittr.</td>
</tr>
<tr>
<td>88</td>
<td>f. amplium (M. and W.) Hirn</td>
</tr>
<tr>
<td>88</td>
<td>v. longum Transeau</td>
</tr>
<tr>
<td>88</td>
<td>v. subulatum Hirn</td>
</tr>
<tr>
<td>92</td>
<td>crenulatocosciatum Wittr.</td>
</tr>
<tr>
<td>93</td>
<td>f. cylindricum Hirn</td>
</tr>
<tr>
<td>93</td>
<td>v. aureum Tilden</td>
</tr>
<tr>
<td>33</td>
<td>v. longiarticulatum Hams.</td>
</tr>
<tr>
<td>171</td>
<td>crenulatum Witt.</td>
</tr>
<tr>
<td>171</td>
<td>v. gracilis (Nord.) Hirn.</td>
</tr>
<tr>
<td>91</td>
<td>crispum (Hass.) Wittr.</td>
</tr>
<tr>
<td>113</td>
<td>f. granulosum (Nor.) Hirn.</td>
</tr>
<tr>
<td>113</td>
<td>f. inflatum Hirn</td>
</tr>
<tr>
<td>114</td>
<td>v. gracilesens Wittr.</td>
</tr>
<tr>
<td>114</td>
<td>v. hawatense Nordst.</td>
</tr>
<tr>
<td>133</td>
<td>v. uruguayense Magnus & Wille.</td>
</tr>
<tr>
<td>63</td>
<td>cryptaporum Witt.</td>
</tr>
<tr>
<td>66</td>
<td>v. vulgar Witt.</td>
</tr>
<tr>
<td>74</td>
<td>curvum Witt. and Lund.</td>
</tr>
<tr>
<td>65</td>
<td>curvum Pringsh.</td>
</tr>
<tr>
<td>65</td>
<td>cyathigerum Witt.</td>
</tr>
<tr>
<td>133</td>
<td>f. americanum Wolle</td>
</tr>
<tr>
<td>134</td>
<td>f. revolutum (Witt.) Hirn.</td>
</tr>
<tr>
<td>134</td>
<td>f. perfectum Hirn</td>
</tr>
<tr>
<td>134</td>
<td>v. ellipticum Magnus. and Wille.</td>
</tr>
<tr>
<td>135</td>
<td>v. hornosporum (West) Hirn.</td>
</tr>
<tr>
<td>67</td>
<td>cymatosporum Witt. & Nordst.</td>
</tr>
<tr>
<td>145</td>
<td>danicum Hallas</td>
</tr>
<tr>
<td>145</td>
<td>decipiens Wittr.</td>
</tr>
<tr>
<td>145</td>
<td>f. dissimile Hirn</td>
</tr>
<tr>
<td>145</td>
<td>v. africanum Tiffany</td>
</tr>
<tr>
<td>146</td>
<td>v. bernardense (Bates) Hirn</td>
</tr>
<tr>
<td>124</td>
<td>depressum Pringsh.</td>
</tr>
<tr>
<td>94</td>
<td>dictyosporum Witt.</td>
</tr>
<tr>
<td>94</td>
<td>f. westii Tiffany</td>
</tr>
<tr>
<td>107</td>
<td>dioicum Carter</td>
</tr>
<tr>
<td>132</td>
<td>donnellii Wolle; Hirn</td>
</tr>
<tr>
<td>132</td>
<td>v. wittrockianum Hirn</td>
</tr>
<tr>
<td>133</td>
<td>echinatum (Wood) Wittr.</td>
</tr>
<tr>
<td>121</td>
<td>echinospermum Al. Br.</td>
</tr>
<tr>
<td>122</td>
<td>v. horridum Hirn.</td>
</tr>
<tr>
<td>122</td>
<td>elegans West and West.</td>
</tr>
<tr>
<td>100</td>
<td>excisum Witt. and Lund.</td>
</tr>
<tr>
<td>89</td>
<td>exostociatum Tiffany</td>
</tr>
<tr>
<td>122</td>
<td>exosporiale Tiffany</td>
</tr>
<tr>
<td>Index</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>fabulosum Hirn</td>
<td>83</td>
</tr>
<tr>
<td>v. columbianum G. S. West</td>
<td>84</td>
</tr>
<tr>
<td>v. maximum (West) Hirn</td>
<td>83</td>
</tr>
<tr>
<td>flava (Hass.) Wittr</td>
<td>125</td>
</tr>
<tr>
<td>flexuosum Hirn</td>
<td>163</td>
</tr>
<tr>
<td>fonicola Al. Braun</td>
<td>163</td>
</tr>
<tr>
<td>foveolatum Wittr</td>
<td>95</td>
</tr>
<tr>
<td>fragile Vittr</td>
<td>75</td>
</tr>
<tr>
<td>v. abyssinicum Hirn</td>
<td>75</td>
</tr>
<tr>
<td>*v. robustum (West) Tiffany</td>
<td>75</td>
</tr>
<tr>
<td>franklinianum Wittr</td>
<td>71</td>
</tr>
<tr>
<td>fims Hallas</td>
<td>102</td>
</tr>
<tr>
<td>gallicum Hirn</td>
<td>124</td>
</tr>
<tr>
<td>geniculatum Hirn</td>
<td>78</td>
</tr>
<tr>
<td>giganteum Kuetz.; Wittr</td>
<td>163</td>
</tr>
<tr>
<td>glabrum Hallas</td>
<td>72</td>
</tr>
<tr>
<td>globosum Nordst</td>
<td>74</td>
</tr>
<tr>
<td>gracillimum Wittr. and Lund</td>
<td>116</td>
</tr>
<tr>
<td>f. majus West and Nordst</td>
<td>116</td>
</tr>
<tr>
<td>grande Kuetz.; Wittr</td>
<td>85</td>
</tr>
<tr>
<td>f. gemelli (Pringsh.) Hirn</td>
<td>85</td>
</tr>
<tr>
<td>v. aquatoriale Wittr</td>
<td>85</td>
</tr>
<tr>
<td>v. angustum Hirn</td>
<td>86</td>
</tr>
<tr>
<td>v. majus Hansg</td>
<td>86</td>
</tr>
<tr>
<td>gunnii Wittr</td>
<td>110</td>
</tr>
<tr>
<td>hians Nordst. and Hirn</td>
<td>149</td>
</tr>
<tr>
<td>hirtii Gutwinski</td>
<td>73</td>
</tr>
<tr>
<td>v. africanum G. S. West</td>
<td>73</td>
</tr>
<tr>
<td>hispidum Nordst</td>
<td>137</td>
</tr>
<tr>
<td>hoehnei Borge</td>
<td>165</td>
</tr>
<tr>
<td>hoersholmiensis Hallas</td>
<td>150</td>
</tr>
<tr>
<td>howardii G. S. West</td>
<td>101</td>
</tr>
<tr>
<td>v. minus Tiffany</td>
<td>102</td>
</tr>
<tr>
<td>huntii Wood</td>
<td>137</td>
</tr>
<tr>
<td>hystricinum Trans. and Tiffany</td>
<td>120</td>
</tr>
<tr>
<td>hystrix Wittr</td>
<td>120</td>
</tr>
<tr>
<td>v. canadense Tiffany</td>
<td>121</td>
</tr>
<tr>
<td>v. subglobosum Wittr</td>
<td>121</td>
</tr>
<tr>
<td>illinoisense Transeau</td>
<td>123</td>
</tr>
<tr>
<td>implexum Hirn</td>
<td>153</td>
</tr>
<tr>
<td>inclusum Hirn</td>
<td>169</td>
</tr>
<tr>
<td>inconspicuum Hirn</td>
<td>160</td>
</tr>
<tr>
<td>indicum Hirn</td>
<td>130</td>
</tr>
<tr>
<td>tenerne Hirn</td>
<td>166</td>
</tr>
<tr>
<td>v. mentiens Hirn</td>
<td>166</td>
</tr>
<tr>
<td>inflatum Tiffany</td>
<td>101</td>
</tr>
<tr>
<td>inflatum Hallas</td>
<td>168</td>
</tr>
<tr>
<td>insignis Hirn</td>
<td>100</td>
</tr>
<tr>
<td>intermedium Wittr</td>
<td>72</td>
</tr>
<tr>
<td>v. fennicum Tiffany</td>
<td>73</td>
</tr>
<tr>
<td>inversum Wittr</td>
<td>100</td>
</tr>
<tr>
<td>iowense Tiffany</td>
<td>106</td>
</tr>
<tr>
<td>irregularis Wittr</td>
<td>131</td>
</tr>
<tr>
<td>v. condensatum (Hallas) Hirn</td>
<td>132</td>
</tr>
<tr>
<td>itzigsohni De Bary</td>
<td>117</td>
</tr>
<tr>
<td>f. heteromorphum Hirn</td>
<td>118</td>
</tr>
<tr>
<td>v. minus West</td>
<td>118</td>
</tr>
<tr>
<td>kirchneri Wittr</td>
<td>116</td>
</tr>
<tr>
<td>kituita G. S. West</td>
<td>129</td>
</tr>
<tr>
<td>kjellmanii Wittr.; Hirn</td>
<td>89</td>
</tr>
<tr>
<td>kurzii Zeller</td>
<td>79</td>
</tr>
<tr>
<td>laetevires Wittr</td>
<td>150</td>
</tr>
<tr>
<td>laevi Wittr</td>
<td>65</td>
</tr>
<tr>
<td>lageniforme Hirn</td>
<td>168</td>
</tr>
<tr>
<td>lagerstedtii Wittr</td>
<td>170</td>
</tr>
<tr>
<td>landora (Hass.) Wittr</td>
<td>87</td>
</tr>
<tr>
<td>v. norvegicum Wittr</td>
<td>87</td>
</tr>
<tr>
<td>laticlavinum Tiffany</td>
<td>102</td>
</tr>
<tr>
<td>laetuumtarum Wittr</td>
<td>72</td>
</tr>
<tr>
<td>leiopleura Nordst. and Hirn</td>
<td>91</td>
</tr>
<tr>
<td>lindmanianum Wittr</td>
<td>133</td>
</tr>
<tr>
<td>lindense Wittr</td>
<td>167</td>
</tr>
<tr>
<td>longatum Kuetz</td>
<td>148</td>
</tr>
<tr>
<td>longicolle Nordst</td>
<td>144</td>
</tr>
<tr>
<td>v. senegalense Nordst</td>
<td>144</td>
</tr>
<tr>
<td>loricatum Hirn</td>
<td>111</td>
</tr>
<tr>
<td>macranderium Wittr</td>
<td>151</td>
</tr>
<tr>
<td>f. acuminatum Hirn</td>
<td>151</td>
</tr>
<tr>
<td>f. aemulans Hirn</td>
<td>151</td>
</tr>
<tr>
<td>f. lundense (Wittr.) Hirn</td>
<td>151</td>
</tr>
<tr>
<td>v. propinquum (Wittr.) Hirn</td>
<td>152</td>
</tr>
<tr>
<td>v. hohenackerii (Wittr.) Tiffany</td>
<td>152</td>
</tr>
<tr>
<td>v. scrobiculatum Ackley</td>
<td>152</td>
</tr>
<tr>
<td>macropernum West and West</td>
<td>146</td>
</tr>
<tr>
<td>magnusti Wittr</td>
<td>86</td>
</tr>
<tr>
<td>mammiferum Wittr.; Nordst</td>
<td>118</td>
</tr>
<tr>
<td>mauschuricum Skvortzow</td>
<td>126</td>
</tr>
<tr>
<td>margaritiferum Nordst. and Hirn</td>
<td>92</td>
</tr>
<tr>
<td>maritimus Hirn</td>
<td>79</td>
</tr>
<tr>
<td>megalorum Wittr</td>
<td>142</td>
</tr>
<tr>
<td>mexicanum Wittr</td>
<td>85</td>
</tr>
<tr>
<td>michiganense Tiffany</td>
<td>157</td>
</tr>
<tr>
<td>minus Wittr</td>
<td>103</td>
</tr>
<tr>
<td>mirandrum Skuja</td>
<td>147</td>
</tr>
<tr>
<td>mitratum Hirn</td>
<td>105</td>
</tr>
<tr>
<td>monile Berks. & Harv.; Wittr</td>
<td>14</td>
</tr>
<tr>
<td>f. borgeri Hirn</td>
<td>154</td>
</tr>
<tr>
<td>v. eminius Hirn</td>
<td>154</td>
</tr>
<tr>
<td>f. victoriense G. S. West</td>
<td>154</td>
</tr>
<tr>
<td>moniliforme Wittr</td>
<td>166</td>
</tr>
<tr>
<td>montagnei Fiorini-Mazzanti; Wittr</td>
<td>162</td>
</tr>
<tr>
<td>multisporum Wood</td>
<td>131</td>
</tr>
<tr>
<td>v. magnum Ackley</td>
<td>131</td>
</tr>
<tr>
<td>nanum Wittr.; Tiffany</td>
<td>109</td>
</tr>
<tr>
<td>nebrascense Ohashi</td>
<td>119</td>
</tr>
<tr>
<td>nobile Wittr</td>
<td>99</td>
</tr>
<tr>
<td>v. minus Hirn</td>
<td>100</td>
</tr>
<tr>
<td>nodulosum Wittr</td>
<td>108</td>
</tr>
<tr>
<td>v. commune Hirn</td>
<td>108</td>
</tr>
<tr>
<td>obesum (Wittr.) Hirn</td>
<td>112</td>
</tr>
<tr>
<td>oblongellum Kirch</td>
<td>116</td>
</tr>
<tr>
<td>oblongum Wittr</td>
<td>117</td>
</tr>
<tr>
<td>f. majus (Nordst.) Hirn</td>
<td>117</td>
</tr>
<tr>
<td>f. sphaericum (Hallas) Hirn</td>
<td>117</td>
</tr>
<tr>
<td>obovertexe Wittr</td>
<td>86</td>
</tr>
<tr>
<td>obsoletem Wittr</td>
<td>69</td>
</tr>
<tr>
<td>obtusatum Wittr</td>
<td>155</td>
</tr>
<tr>
<td>v. complanatum Hirn</td>
<td>155</td>
</tr>
<tr>
<td>v. ellipsoidesum Wittr</td>
<td>155</td>
</tr>
<tr>
<td>The Oedogoniaceae</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>oelandicum Wittr.; Hirn</td>
<td>142</td>
</tr>
<tr>
<td>f. minus Borge</td>
<td>142</td>
</tr>
<tr>
<td>oryza Wittr</td>
<td>163</td>
</tr>
<tr>
<td>v. seriisporum (Lager.) Hirn</td>
<td>163</td>
</tr>
<tr>
<td>oviforme (Lewin) Hirn</td>
<td>78</td>
</tr>
<tr>
<td>pachyandrium Wittr</td>
<td>84</td>
</tr>
<tr>
<td>pachydermium Wittr. and Lund</td>
<td>115</td>
</tr>
<tr>
<td>paludosum (Hass.) Wittr</td>
<td>90</td>
</tr>
<tr>
<td>v. americanum Nordst</td>
<td>90</td>
</tr>
<tr>
<td>v. parvisporum Hirn</td>
<td>90</td>
</tr>
<tr>
<td>panocostatum Transeau</td>
<td>98</td>
</tr>
<tr>
<td>v. gracilis Tiffany</td>
<td>98</td>
</tr>
<tr>
<td>paulense Nordst. and Hirn</td>
<td>90</td>
</tr>
<tr>
<td>perspicuum Hirn</td>
<td>141</td>
</tr>
<tr>
<td>petri Wittr</td>
<td>105</td>
</tr>
<tr>
<td>pilosorum West</td>
<td>163</td>
</tr>
<tr>
<td>pisaneum Wittr</td>
<td>109</td>
</tr>
<tr>
<td>v. gracillimus Trans. and Tiffany</td>
<td>110</td>
</tr>
<tr>
<td>pithophora Wittr</td>
<td>112</td>
</tr>
<tr>
<td>plagiostrumum Wittr</td>
<td>80</td>
</tr>
<tr>
<td>v. gracilis Wittr</td>
<td>81</td>
</tr>
<tr>
<td>plagynum Wittr</td>
<td>143</td>
</tr>
<tr>
<td>f. obisum Hirn</td>
<td>143</td>
</tr>
<tr>
<td>v. continuum Nordst</td>
<td>143</td>
</tr>
<tr>
<td>v. nova zelandiae Hirn</td>
<td>144</td>
</tr>
<tr>
<td>pliostrobus Wittr</td>
<td>170</td>
</tr>
<tr>
<td>pliiostroBUSum Wittr.</td>
<td>70</td>
</tr>
<tr>
<td>pluteale Nordst</td>
<td>150</td>
</tr>
<tr>
<td>poecilosporum Nordst. and Hirn</td>
<td>168</td>
</tr>
<tr>
<td>porrectum Nordst. and Hirn</td>
<td>109</td>
</tr>
<tr>
<td>protense Transeau</td>
<td>102</td>
</tr>
<tr>
<td>praticolium Transeau</td>
<td>156</td>
</tr>
<tr>
<td>princeps (Hass.) Wittr</td>
<td>82</td>
</tr>
<tr>
<td>pringsheimii Cramer; Wittr</td>
<td>107</td>
</tr>
<tr>
<td>v. abbreviatum Hirn</td>
<td>107</td>
</tr>
<tr>
<td>v. nordstedti Wittr</td>
<td>108</td>
</tr>
<tr>
<td>psegnatosporum Nordst</td>
<td>103</td>
</tr>
<tr>
<td>pseudacrosporum Wittr</td>
<td>98</td>
</tr>
<tr>
<td>pseudoboschii Hirn</td>
<td>76</td>
</tr>
<tr>
<td>pulchrum Nordst. and Hirn</td>
<td>170</td>
</tr>
<tr>
<td>punctostriatum De Bary</td>
<td>104</td>
</tr>
<tr>
<td>punctatum Wittr</td>
<td>96</td>
</tr>
<tr>
<td>pungens Hirn</td>
<td>122</td>
</tr>
<tr>
<td>pusillum Kirchner</td>
<td>161</td>
</tr>
<tr>
<td>pyriforme Wittr</td>
<td>110</td>
</tr>
<tr>
<td>pyxidium Wittr</td>
<td>111</td>
</tr>
<tr>
<td>v. amplius Taylor</td>
<td>111</td>
</tr>
<tr>
<td>quadratum Hallas</td>
<td>105</td>
</tr>
<tr>
<td>reinschii Roy</td>
<td>172</td>
</tr>
<tr>
<td>reticulatum West and West</td>
<td>171</td>
</tr>
<tr>
<td>rhodosporum (Welwitsch) Wittr</td>
<td>162</td>
</tr>
<tr>
<td>richterianum Lemm</td>
<td>76</td>
</tr>
<tr>
<td>rigidum Hirn</td>
<td>139</td>
</tr>
<tr>
<td>rivulare (Le. Cl.) Al. Br</td>
<td>84</td>
</tr>
<tr>
<td>rothii (Le. Cl.) Pringsheim</td>
<td>144</td>
</tr>
<tr>
<td>rufescens Wittr</td>
<td>66</td>
</tr>
<tr>
<td>*v. exiguum (Elfv.) Tiffany</td>
<td>66</td>
</tr>
<tr>
<td>v. ludellii (Wittr.) Tiffany</td>
<td>66</td>
</tr>
<tr>
<td>rugulosum Nordst</td>
<td>148</td>
</tr>
<tr>
<td>f. minutum (Hansg.) Hirn</td>
<td>149</td>
</tr>
<tr>
<td>f. rotundatum Hirn</td>
<td>149</td>
</tr>
<tr>
<td>rupestre Hirn</td>
<td>114</td>
</tr>
<tr>
<td>f. pseudanumumale Hirn</td>
<td>115</td>
</tr>
<tr>
<td>sancti thoma Wittr. and Cleve</td>
<td>161</td>
</tr>
<tr>
<td>saxatile Hansg</td>
<td>171</td>
</tr>
<tr>
<td>schmidii Gutwinski</td>
<td>148</td>
</tr>
<tr>
<td>schauderianum Wittr</td>
<td>95</td>
</tr>
<tr>
<td>selandiae Hallas</td>
<td>161</td>
</tr>
<tr>
<td>semiapertum Nordst. and Hirn</td>
<td>124</td>
</tr>
<tr>
<td>sexangulare Cleve</td>
<td>126</td>
</tr>
<tr>
<td>v. angulosum (Hallas) Hirn</td>
<td>126</td>
</tr>
<tr>
<td>v. majus Wille</td>
<td>127</td>
</tr>
<tr>
<td>silicaticum Hallas</td>
<td>127</td>
</tr>
<tr>
<td>simplex Hirn</td>
<td>111</td>
</tr>
<tr>
<td>sociale Wittr</td>
<td>67</td>
</tr>
<tr>
<td>sodaenorum Lagerheim</td>
<td>77</td>
</tr>
<tr>
<td>sol Hirn</td>
<td>167</td>
</tr>
<tr>
<td>spectabile Hirn</td>
<td>153</td>
</tr>
<tr>
<td>sphearandrum Wittr. and Lund</td>
<td>112</td>
</tr>
<tr>
<td>spirale Hirn</td>
<td>123</td>
</tr>
<tr>
<td>v. acutum G. S. West</td>
<td>123</td>
</tr>
<tr>
<td>v. latviense Tiffany</td>
<td>123</td>
</tr>
<tr>
<td>sporiunum Hirn</td>
<td>164</td>
</tr>
<tr>
<td>stellatum Wittr</td>
<td>127</td>
</tr>
<tr>
<td>suboctangulare G. S. West</td>
<td>79</td>
</tr>
<tr>
<td>subrectum Hirn</td>
<td>87</td>
</tr>
<tr>
<td>sucinum Wittr</td>
<td>68</td>
</tr>
<tr>
<td>f. australis G. S. West</td>
<td>68</td>
</tr>
<tr>
<td>supremenium Tiffany</td>
<td>156</td>
</tr>
<tr>
<td>tapetinosporum Wittr</td>
<td>159</td>
</tr>
<tr>
<td>laphrosporum Nordst. and Hirn</td>
<td>97</td>
</tr>
<tr>
<td>tentoriale Nordst. and Hirn</td>
<td>157</td>
</tr>
<tr>
<td>tenuissimum Hansg</td>
<td>160</td>
</tr>
<tr>
<td>tiffani Ackley</td>
<td>95</td>
</tr>
<tr>
<td>triocum Woronichin</td>
<td>106</td>
</tr>
<tr>
<td>tumidulum (Kuetz.) Wittr</td>
<td>90</td>
</tr>
<tr>
<td>tylicum Wittr</td>
<td>70</td>
</tr>
<tr>
<td>tuleanum Hirn</td>
<td>170</td>
</tr>
<tr>
<td>undulatum (Breb.) Al. Br.; Wittr</td>
<td>118</td>
</tr>
<tr>
<td>v. americanum Transeau</td>
<td>119</td>
</tr>
<tr>
<td>f. senegalense (Nordst.) Hirn</td>
<td>119</td>
</tr>
<tr>
<td>upsaliense Wittr</td>
<td>77</td>
</tr>
<tr>
<td>v. ferrinuncum Hirn</td>
<td>78</td>
</tr>
<tr>
<td>urbicium Wittr</td>
<td>69</td>
</tr>
<tr>
<td>urceolatum Nordst. and Hirn</td>
<td>167</td>
</tr>
<tr>
<td>varians Wittr. and Lund</td>
<td>69</td>
</tr>
<tr>
<td>vaucheri (Le Cl.) Al. Br.; Wittr</td>
<td>76</td>
</tr>
<tr>
<td>velatum Hallas</td>
<td>164</td>
</tr>
<tr>
<td>verrucosum Hallas</td>
<td>95</td>
</tr>
<tr>
<td>vesicatum (Lyngbye) Wittr</td>
<td>162</td>
</tr>
<tr>
<td>victoriense G. S. West</td>
<td>129</td>
</tr>
<tr>
<td>virguburgense Hirn</td>
<td>164</td>
</tr>
<tr>
<td>wabashense Tiffany</td>
<td>156</td>
</tr>
<tr>
<td>warmingianum Wittr</td>
<td>169</td>
</tr>
<tr>
<td>weltwitschii West</td>
<td>106</td>
</tr>
<tr>
<td>wollewurum Wittr</td>
<td>135</td>
</tr>
<tr>
<td>f. insignis (Nordst.) Hirn</td>
<td>136</td>
</tr>
<tr>
<td>v. conicum Hirn</td>
<td>135</td>
</tr>
<tr>
<td>wytleri Tiffany</td>
<td>97</td>
</tr>
<tr>
<td>zigzag Cleve</td>
<td>74</td>
</tr>
</tbody>
</table>
PLATES
PLATE I.

Fig. 1. Bulbochaete elatior Pringsheim. (Redrawn from Hirn) 32
Fig. 2. B. elatior f. pumila Hirn. (Redrawn from Hirn) 33
Fig. 3. B. elatior v. scrobiculata Tiffany 33
Fig. 4. B. crenulata Pringsheim. (Redrawn from Hirn) 34
Fig. 5. B. intermedia De Bary .. 35
Fig. 6. B. intermedia v. depressa Wittrock 35
Fig. 7. B. brebissonii Kuetzing. (After Hirn) 33
Fig. 8. B. furberae Collins. (After Lewis, in Collins 1918a) 34
Fig. 9. B. minuta West and West. (After G. S. West) 33

Page 190
Fig. 10. *Bulbochaete borealis* Wittrock. (Redrawn from Hirn).............. 37
Fig. 11. *B. polyandria* Cleve, with oogonia.................................. 38
Fig. 12. *B. polyandria* Cleve, with androsporangia. (After Wittrock)........ 38
Fig. 13. *B. polyandria* f. *notabilis* Hirn. (Redrawn from Hirn)........... 38
Fig. 14. *B. angulosa* Wittrock and Lundell. (Redrawn from Hirn)............ 36
Fig. 15. *B. subintermedia* Elfving. (Redrawn from Hirn)..................... 36
Fig. 16. *B. diamesandria* Nordstedt and Hirn. (Redrawn from Hirn)......... 38
Fig. 17. *B. nordstedtii* Wittrock.. 37
Fig. 18. *B. nordstedtii* f. *suberecta* Collins.................................. 37
PLATE III.

Fig. 19. *Bulbochaete sessilis* Wittrock. (Redrawn from Hirn).......................... 39
Fig. 20. *B. sessilis f. glabra* Hirn. (Redrawn from Hirn).......................... 39
Fig. 21. *B. elachistandria* Wittrock. (Redrawn from Pringsheim)............... 39
Fig. 22. *B. quadrata* Wittrock. (Redrawn from Hirn)................................. 42
Fig. 23. *B. dispar* Wittrock. (Redrawn from Hirn)................................. 40
Figs. 24 and 25. *B. dispar v. ripartiana* Wittrock. (After Hirn)............... 41
Fig. 26. *B. obliqua* Lundell. (After Hirn).. 39
Bulbochaete valida Wittrock. (Redrawn from Hirn) 42
B. crassiuscula Nordstedt, with androsporangia. (After Nordstedt) 41
B. crassiuscula Nordstedt, with oogonia. (After Hirn) 41
B. pyrulum Lundell. (Redrawn from Hirn) 43
B. punctulata (Nordstedt) Hirn. (After Nordstedt) 41
B. crassa Pringsheim .. 41
Figs. 33 and 34. Bulbochaete congener Hirn. .. 42
Figs. 35 and 36. B. gigantea Pringsheim. ... 38
Fig. 37. B. setigera (Roth) Agardh. .. 40
Fig. 38. B. alabamensis Transeau and Brown 40

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

194
PLATE VI.

Figs. 39 and 40. Bulbochaete doliiformis Borge. (Redrawn from Borge)...... 43
Fig. 41. B. pygmaea Pringsheim.. 43
Fig. 42. B. horrida Nordstedt. (Redrawn from Hirn)......................... 50
Fig. 43. B. rectangularis Wittrock.. 45
Fig. 44. B. rectangularis v. hiloensis Nordstedt. (After Hirn)............. 45
Fig. 45. B. anomala Pringsheim. (After Pringsheim).......................... 48
Fig. 46. B. lagoensis Wittrock. (Redrawn from Hirn)......................... 46
Fig. 47. B. repanda Wittrock.. 44
Fig. 48. B. varians Wittrock... 45
Fig. 49. B. varians v. subsimplex (Wittrock) Hirn.............................. 45
Fig. 50. B. varians v. hawaiensis Nordstedt..................................... 46
Fig. 51. B. denticulata Wittrock. (Redrawn from Hirn)....................... 48

Page 195
PLATE VII.

Figs. 52 and 53. *Bulbochaete bullardi* Transeau and Tiffany............................... 47
Fig. 54. *B. minor* Al. Braun; Wittrock.. 47
Fig. 55. *B. minor* v. *germanica* Hirn. (After Hirn)....................................... 47
Fig. 56. *B. brevifulta* Wittrock. (Redrawn from Hirn).................................... 50
Figs. 57 and 58. *B. spirogranulata* West and West. (Redrawn from G. S. West) 49
Fig. 59. *B. tenuis* (Wittrock) Hirn. (Redrawn from Hirn)................................. 48
Fig. 60. *B. tenuis* v. *norvegica* (Wittrock) Hirn. (Redrawn from Hirn)............ 44
Fig. 61. *B. affinis* Hirn. (Redrawn from Hirn).. 48
Fig. 62. Bulbochaete insignis Pringsheim 48
Fig. 63. B. insignis v. reticulata (Nordstedt) Hirn. (After Hirn) 49
Fig. 64. B. imperialis Wittrock. (Redrawn from Hirn) 49
Fig. 65. B. imperialis v. regalis Wittrock. (Redrawn from Hirn) 49
Fig. 66. B. rhadinospora Wittrock. (After Hirn) 46
Fig. 67. B. rhadinospora f. antiqua (Nordstedt) Hirn. (After Hirn) 46
Fig. 68. B. rhadinospora v. litoralis Hirn. (After Hirn) 47
Fig. 69. Bulbochaete mirabilis Wittrock. (Redrawn from Hirn) 32
Fig. 70. B. mirabilis f. immersa (Wittrock) Hirn. (Redrawn from Hirn) 32
Fig. 71. B. mirabilis v. gracilis (Pringsheim) Hirn. (Redrawn from Hirn) ... 32
Fig. 72. B. monile Wittrock and Lundell. (Redrawn from Hirn) 30
Fig. 73. B. monile v. robusta Hirn. (Redrawn from Hirn) 30
Fig. 74. B. basispora Wittrock and Lundell ... 31
Fig. 75. B. nana Wittrock. (Redrawn from Hirn) 30
Fig. 76. B. megastoma Wittrock and Lundell. (After Wittrock) 31
Fig. 77. B. debaryana Wittrock and Lundell. (Redrawn from Hirn) 31
Figs. 78-83. Germination of oospore of *B. elachistandria* Wittrock. (After Pringsheim)

Figs. 93-98. Development of bristle and first cell division of a germinated zoospore of *B. setigera* (Roth) Agardh. (After Pringsheim).

Fig. 99. A young plant of *B. setigera* (Roth) Agardh showing manner of branching: a, Primary filament developed from zoospore. b, Branch of the first order. c, d, e, Branches of the second, third, and fourth order, respectively. (Modified from Pringsheim).
Fig. 100. *Oedogonium laeve* Wittr. ... 65
Fig. 101. *Oe. cryptoporum* Wittr. .. 65
Fig. 102. *Oe. cryptoporum* v. *vulgare* Wittr. (Redrawn from Hirn) 66
Figs. 103 and 104. *Oe. curvum* Pringsh ... 65
Fig. 103. *Oe. rufescens* Wittr. (Redrawn from Hirn) 66
Fig. 106. *Oe. rufescens* v. *exiguum* (Elfv.) Tiffany 65
Fig. 107. *Oe. rufescens* v. *lundellii* (Wittr.) Tiffany. (Redrawn from Hirn) .. 66
Fig. 108. *Oe. calcareum* Cleve. (Redrawn from Hirn) 67
Fig. 109. *Oe. sociale* Wittr. (Redrawn from Hirn) .. 67
Fig. 110. *Oe. inerme* Hirn. (Redrawn from Hirn) ... 166
Fig. 111. *Oe. inerme* v. *mentiens* Hirn. (Redrawn from Hirn) 166

Page

200
Figs. 112 and 113. Oedogonium cymatosporum Wittr. and Nordst. (Redrawn from Hirn) .. 67
Fig. 114. Oe. moniliforme Wittr. ... 166
Fig. 115. Oe. magnusii Wittr. (Redrawn from Hirn) 68
Fig. 116. Oe. suecicum Wittr. .. 68
Fig. 117. Oe. suecicum f. australis G. S. West. (Redrawn from West) 68
Figs. 118 and 119. Oe. urbicium Wittr. (Redrawn from Pringsheim) ... 69
Fig. 120. Oe. varians Wittr. and Lund ... 69
Fig. 121. Oe. obsoletum Wittr. (Redrawn from Hirn) 69
Fig. 122. Oe. plusiosporum Wittr. (Redrawn from Hirn) 70
Fig. 123. Oe. tyrolicum Wittr ... 70
Figs. 124 and 125. Oedogonium cardiacum (Hass.) Wittr. (Redrawn from Hirn) .. 70
Fig. 126. Oe. cardiacum f. pulchellum (Hass.) Hirn. (Redrawn from Hirn) .. 71
Fig. 127. Oe. cardiacum f. interjectum Hirn. (Redrawn from Hirn) .. 71
Fig. 128. Oe. cardiacum v. carbonicum Wittr .. 71
Fig. 129. Oe. cardiacum v. minus Lemm .. 71
Fig. 130. Oe. glabrum Hallas. (Redrawn from Hallas) .. 72
Fig. 131. Oe. franklinianum Wittr .. 71
Figs. 132 and 133. Oedogonium lautumniarum Wittr. (Redrawn from Hirn) 72
Fig. 134. Oe. intermedium Wittr. 72
Fig. 135. Oe. intermedium v. fennicum Tiffany 73
Fig. 136. Oe. hirnii Gutw. (Redrawn from W. and G. S. West) 73
Fig. 137. Oe. hirnii Gutw. (Redrawn from Gutwinski) 73
Fig. 138. Oe. hirnii v. africanum G. S. West 73
Fig. 139. Oe. globosum Nordst. (Redrawn from Hirn) 74
Fig. 140. Oe. plagiostomum Wittr. (Redrawn from Hirn) 80
Figs. 141 and 142. Oe. plagiostomum v. gracilius Wittr. 81
Figs. 143 and 144. *Oedogonium zigzag* Cleve. (Redrawn from Hirn)........ 74
Fig. 145. *Oe. fragile* Wittr. ... 75
Fig. 146. *Oe. fragile v. robustum* (W. and W.) Tiffany. (Redrawn from West) ... 75
Fig. 147. *Oe. fragile v. abyssinicum* Hirn. (Redrawn from Hirn) 75
Fig. 148. *Oe. warmingianum* Wittr. (Redrawn from Hirn) 169
Fig. 149. *Oe. curtum* Wittr. and Lund. (Redrawn from Hirn) 74
Figs. 150 and 151. *Oe. vaucheri* (Le Cl.) A. Br.; Wittr. 76
Fig. 152. Oedogonium oviforme (Lewin) Hirn............. 78
Figs. 153 and 154. Oe. sodiroanum Lagerh.................. 77
Fig. 155. Oe. geniculatum Hirn............................... 78
Fig. 156. Oe. richterianum Lemm. (Redrawn from Hirn).... 76
Fig. 157. Oe. upsaliense Wittr......................... 77
Fig. 158. Oe. upsaliense v. fennicum Hirn. (Redrawn from Hirn).... 78

Page 205
PLATE XVII.

Fig. 159. *Oedogonium martinicense* Hirn. (Redrawn from Hirn) 79
Fig. 160. *Oe. suboctangulare* West and West. (Redrawn from West) 79
Figs. 161 and 162. *Oe. biforme* Nordst. (Redrawn from Hirn) 83
Fig. 163. *Oe. kurzii* Zeller. (Redrawn from Hirn) 79

Page

206
PLATE XVIII.

Figs. 164 and 165. *Oedogonium capillare* (L.) Kuetz. .. S0
Fig. 166. *Oe. capillare f. stagnale* (Kuetz.; Wittr.) Hirn. (Redrawn from Hirn). .. S0
Figs. 167-169. *Oe. princeps* (Hass.) Wittr .. S2
Figs. 170 and 171. *Oe. anomalum* Hirn .. S3

Page

207
Figs. 172 and 173. *Oe. capilliforme* Kuetz.: Wittr. .. 81
Fig. 174. *Oe. capilliforme* f. debaryanum (Chmiel.) Hirn 81
Fig. 175. *Oe. capilliforme* f. lorentzii (M. & W.) Hirn. (Redrawn from Hirn) 81
Figs. 176 and 177. *Oe. capilliforme* v. australis Wittr. 82
Fig. 178. *Oe. capilliforme* v. diversum (Hirn) Tiffany. (Redrawn from Hirn) 82
Figs. 179 and 180. *Oedogonium pachyandrium* Wittr. (Redrawn from Hirn)........ 84
Figs. 181-183. *Oe. subrectum* Hirn. (Redrawn from Hirn).......................... 87
Figs. 184 and 185. *Oe. oboviforme* Wittr. (Redrawn from Hirn)................. 86
Fig. 186. *Oe. pseudobosci* Hirn. (Redrawn from Silfvenius)......................... 76
Fig. 187. *Oe. lageniforme* Hirn. (Redrawn from Hirn).............................. 168
Figs. 188 and 189. *Oe. mexicanum* Wittr. (Redrawn from Hirn) 85
Fig. 190. *Oe. oryzae* Wittr. (Redrawn from Hirn) 163
Figs. 191 and 192. *Oe. oryzae v. seriosporum* (Lagerh.) Hirn. (Redrawn from Hirn) .. 164
Figs. 193 and 194. *Oe. inflatum* Hallas. (Redrawn from Hallas) 168
PLATE XXII.

Figs. 195 and 196. *Oedogonium grande* Kuetz.; Wittr. .. 85
Fig. 197. *Oe. grande* v. *majus* Hansg. ... 86
Figs. 198 and 199. *Oe. grande* v. *angustum* Hirn. (Redrawn from Hirn) 86
Fig. 200. *Oe. grande* f. *gemelliparum* (Pringsh.) Hirn. (Redrawn from Hirn) . 85
Fig. 201. *Oe. grande* v. *aequatoriale* Wittr. (Redrawn from Hirn) 85
PLATE XXIII.

Figs. 202 and 203. *Oedogonium crassum* (Hass.) Wittr. 88
Figs. 204 and 205. *Oe. crassum f. amplum* (M. & W.) Hirn. (Redrawn from Hirn) ... 88
Figs. 206 and 207. *Oe. crassum v. subtumidum* Hirn. (Redrawn from Hirn). 88
Fig. 208. Oedogonium crassum v. longum Transeau

Figs. 209 and 210. Oe. rivulare (Le Cl.) Al. Br. (Redrawn from Hirn)

Figs. 211 and 212. Oe. landsboroughi (Hass.) Wittr

Figs. 213 and 214. Oe. landsboroughi v. norvegicum Wittr

Page

Fig. 208. Oedogonium crassum v. longum Transeau 88
Figs. 209 and 210. Oe. rivulare (Le Cl.) Al. Br. (Redrawn from Hirn) 84
Figs. 211 and 212. Oe. landsboroughi (Hass.) Wittr 87
Figs. 213 and 214. Oe. landsboroughi v. norvegicum Wittr 87
Figs. 215 and 216. Oedogonium fabulosum Hirn. (Redrawn from Hirn)...... 83
Figs. 217 and 218. Oe. fabulosum v. maximum (West) Hirn. (Redrawn from West).. 83
Fig. 219. Oe. fabulosum v. columbianum G. S. West. (Redrawn from West) 84
Fig. 220. Oe. angustissimum West and West. (Redrawn from West).........100

(This plate presents a comparison between the largest and smallest species of Oedogonium.)
Figs. 221 and 222. *Oedogonium leiopleurum* Nord. and Hirn. (Redrawn from Hirn) .. 91
Fig. 223. *Oe. kjellmani* Wittr.; Hirn. (Redrawn from Hirn) .. 89
Fig. 224. *Oe. paulense* Nord. and Hirn. (Redrawn from Schmidle) .. 90
Figs. 225 and 226. *Oe. boscii* (Le Cl.) Wittr .. 91
Figs. 227 and 228. *Oe. boscii* v. *occidentale* Hirn. (Redrawn from Hirn) .. 92
Fig. 229. *Oe. boscii* v. *notabile* Lemm. (Redrawn from Hirn) .. 92
Fig. 230. *Oe. boscii* f. *dispar* Hirn. (Redrawn from Hirn) .. 91
Fig. 231. *Oe. paludosum* (Hass.) Wittr .. 90
Fig. 232. *Oe. paludosum* v. *parvisporum* Hirn .. 90

215
Fig. 233. Oedogonium paludosum v. americanum Nord. (Redrawn from Hirn). .. 90
Fig. 234. Oe. margaritiferum Nord. and Hirn. (Redrawn from Hirn) ... 92
Figs. 235-237. Oe. exocostatum Tiffany .. 89
Figs. 238 and 239. Oe. urceolatum Nord. and Hirn. (Redrawn from Hirn) 167
PLATE XXVIII.

Figs. 240 and 241. Oedogonium crenulatocostatum Wittr. ... 92
Figs. 242 and 243. Oe. crenulatocostatum v. longiarticulatum Hansg. 93
Fig. 244. Oe. crenulatocostatum f. cylindricum Hirn. ... 93
Fig. 245. Oe. crenulatocostatum v. aureum Tilden. (Redrawn from Hirn) 93
Fig. 246. Oe. dictyosporum Wittr. (Redrawn from Hirn) .. 94
Fig. 247. Oe. arcysporum Nord. and Hirn. (Redrawn from Hirn) 94
Figs. 248–250. Oe. areolatum Lagerh. (Redrawn from Hirn) ... 94
Fig. 251. Oe. hoehnei Borge. (Redrawn from Borge) ... 165

Page

217
Fig. 252. Oedogonium foveolatum Wittr. (Redrawn from Hirn) 95
Figs. 253 and 254. Oe. argenteum Hirn .. 96
Figs. 255 and 256. Oe. punctatum Wittr. (Redrawn from Hirn) 96
Fig. 257. Oe. capense Nord. and Hirn. (Redrawn from Hirn) 166
Figs. 258 and 259. Oe. scrobiculatum Wittr. (Redrawn from Hirn) 95
Fig. 260. Oe. giganteum Kuetz.; Wittr. (Redrawn from Hirn) 165

Page

218
Figs. 261–263. Oedogonium tifaniii Ackley 95
Figs. 264–267. Oe. wyliei Tiffany ... 97
Figs. 268 and 269. Oe. pseudacrosporum Wittr. (Redrawn from Hirn) ... 98
Figs. 270 and 271. *Oedogonium taphrosporum* Nord. and Hirn. (Redrawn from Hirn)................................. 97
Figs. 272-274. *Oe. verrucosum* Hallas. (Redrawn from Hallas)................................. 95
Figs. 275 and 276. *Oe. americanum* Transeau... 17
Fig. 277. Oedogonium paucocostatum Transeau. 98
Fig. 278. Oe. paucocostatum v. gracilis Tiffany. 98
Fig. 279. Oe. nobile Wittr. (Redrawn from Hirn) 99
Fig. 280. Oe. nobile v. minus Hirn. (Redrawn from Hirn) 100
Figs. 281 and 282. Oe. tumidulum (Kuetz.) Wittr. (Redrawn from Hirn) ... 99
Figs. 283 and 284. Oe. australianum Hirn. (Redrawn from Hirn) 99
Fig. 285. *Oedogonium insigne* Hirn. (Redrawn from Hirn) 100
Fig. 286. *Oe. sol* Hirn. (Redrawn from Hirn) ... 167
Figs. 287 and 288. *Oe. latiusculum* Tiffany ... 102
Figs. 289–292. *Oe. infimum* Tiffany ... 101
Fig. 293. *Oe. howardii* G. S. West. (Redrawn from West) 101
Fig. 294. *Oe. howardii v. minus* Tiffany .. 102
Figs. 295–297. *Oe. inversum* Wittr ... 100
Figs. 298 and 299. Oedogonium pratense Transeau .. 102
Fig. 300. Oe. acmandrium Elfv. (Redrawn from Hirn) .. 103
Fig. 301. Oe. pseagmatosporum Nordst. (Redrawn from Hirn) .. 103
Fig. 302. Oe. minus Wittr .. 103
Figs. 303 and 304. Oe. punctostriatum De Bary. (Redrawn from Hirn) 104
Fig. 305. Oe. poecilosporum Nordst. and Hirn. (Redrawn from Hirn) 105
Figs. 306-308. Oe. quadratum Hallas. (Redrawn from Hallas) .. 105
Figs. 309 and 310. Oe. calvum Wittr. (Redrawn from Hirn) .. 106
Fig. 311. Oe. fusus Hallas. (Redrawn from Hallas) .. 106
Fig. 312. Oe. inconspicuum Hirn. (Redrawn from Nordstedt) .. 107
Fig. 313. Oe. inconspicuum Hirn .. 107
Fig. 314. Oe. tapeinosporum Wittr .. 159
Fig. 315. Oe. capitellatum Wittr. (Redrawn from Hirn) .. 104
Fig. 316. Oe. pusillium Kirchner .. 161
Fig. 317. Oe. excisum Wittr. and Lund. (Redrawn from Wittrock) .. 160
Fig. 318. Oe. gunniit Wittr .. 110
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Oedogonium crispum (Hass.) Wittr</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>319</td>
<td>O. crispum v. hawaiense Nord. (Redrawn from Hirn)</td>
<td>113</td>
</tr>
<tr>
<td>320</td>
<td>O. crispum v. gracilescens Wittr. (Redrawn from Hirn)</td>
<td>114</td>
</tr>
<tr>
<td>321</td>
<td>O. crispum f. granulosum (Nord.) Hirn. (Redrawn from Hirn)</td>
<td>113</td>
</tr>
<tr>
<td>322</td>
<td>O. crispum f. inflatum Hirn. (Redrawn from Hirn)</td>
<td>113</td>
</tr>
<tr>
<td>323</td>
<td>O. crispum v. uruguayense M. & W. (Redrawn from Hirn)</td>
<td>114</td>
</tr>
<tr>
<td>324</td>
<td>Oe. pringsheimii Cramer; Wittr</td>
<td>107</td>
</tr>
<tr>
<td>325</td>
<td>Oe. pringsheimii v. nordstedtii Wittr</td>
<td>108</td>
</tr>
<tr>
<td>326</td>
<td>Oe. pringsheimii v. abbreviatum Hirn. (Redrawn from Hirn)</td>
<td>107</td>
</tr>
<tr>
<td>Fig.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>332</td>
<td>Oedogonium petri Wittr. (Redrawn from Hirn)</td>
<td>105</td>
</tr>
<tr>
<td>333</td>
<td>Oe. spurium Hirn. (Redrawn from Hirn)</td>
<td>164</td>
</tr>
<tr>
<td>334</td>
<td>Oe. mitratum Hirn</td>
<td>105</td>
</tr>
<tr>
<td>335</td>
<td>Oe. virceburgense Hirn. (Redrawn from Hirn)</td>
<td>164</td>
</tr>
<tr>
<td>336</td>
<td>Oe. sphaerandrium Wittr. and Lund. (a. After Borge. b. After Nordstedt)</td>
<td>112</td>
</tr>
<tr>
<td>337</td>
<td>Oe. pithophorae Wittr. (Redrawn from Hirn)</td>
<td>112</td>
</tr>
<tr>
<td>338</td>
<td>Oe. loricatum Hirn. (Redrawn from Hirn)</td>
<td>111</td>
</tr>
<tr>
<td>339</td>
<td>Oe. simplex Hirn. (Redrawn from Hirn)</td>
<td>111</td>
</tr>
<tr>
<td>340</td>
<td>Oe. autunnale Wittr. (Redrawn from Hirn)</td>
<td>112</td>
</tr>
<tr>
<td>341</td>
<td>Oe. nanum Wittr.; Tiffany</td>
<td>109</td>
</tr>
<tr>
<td>342</td>
<td>Oe. bohemicum Hirn</td>
<td>105</td>
</tr>
<tr>
<td>343</td>
<td>Oe. rupestre Hirn. (Redrawn from Hirn)</td>
<td>114</td>
</tr>
<tr>
<td>344</td>
<td>Oe. rupestre f. pseudautumnale Hirn. (Redrawn from Hirn)</td>
<td>115</td>
</tr>
</tbody>
</table>

Page 225
PLATE XXXVII.

Fig. 347. Oedogonium obesum (Wittr.) Hirn. (Redrawn from Hirn)...... 112
Fig. 348. Oe. pyriforme Wittr. (Redrawn from Hirn).................. 110
Fig. 349. Oe. pyrulum Wittr. (Redrawn from Hirn).................. 111
Fig. 350. Oe. pyrulum v. amplius Taylor.............................. 111
Figs. 351 and 352. Oe. welwitschii West.............................. 106
Figs. 353–355. Oe. iowense Tiffany 106
Figs. 356 and 357. Oe. dioicum Carter. (After Carter)............... 107
Fig. 358.	Oedogonium ahlstrandii Wittr. (Redrawn from Hirn)	115
Fig. 359.	Oe. selandiae Hallas. (After Hallas)	161
Fig. 360.	Oe. sancti thomae Wittr. and Cleve	161
Fig. 361 and 362.	Oe. porrectum Nord. and Hirn. (Redrawn from Hirn)	109
Figs. 363 and 364.	Oe. pisanum Wittr. (Redrawn from Hirn)	109
Figs. 365 and 366.	Oe. pisanum v. gracilis Trans. and Tiff.	110
Fig. 367.	Oe. oblongum Wittr.	117
Figs. 368 and 369.	Oe. oblongum f. sphaericum (Hallas) Hirn. (After Hallas)	117
Fig. 370.	Oe. oblongum f. majus (Nord.) Hirn. (Redrawn from Hirn)	117
Fig. 371.	Oe. kirchneri Wittr. (Redrawn from Hirn)	116
Fig. 372.	Oe. oblongellum Kirch. (After W. and G. S. West)	116
Fig. 373.	Oe. gracillimum Wittr. and Lund	116

Page 227
PLATE XXXIX.

Figs. 374 and 375. *Oedogonium nodulosum* Wittr. (Redrawn from Hirn)........... 108
Fig. 376. *Oe. nodulosum* v. *commune* Hirn. (Redrawn from Hirn)........... 108
Figs. 377 and 378. *Oe. pachydermum* Wittr. and Lund. (Redrawn from Hirn)........... 115
Figs. 379 and 380. *Oe. itzigsohnii* De Bary. (Redrawn from Hirn)........... 117
Fig. 381. *Oe. itzigsohnii* f. *heteromorphum* Hirn. (Redrawn from Hirn)........... 118
Fig. 382. *Oe. itzigsohnii* v. *minus* West. (Redrawn from West)........... 118
Figs. 383–385. *Oe. mammiferum* Wittr.; Nord....................... 118

Page 228
Figs. 386 and 387. Oedogonium vesicatum (Lyng.) Wittr. (Redrawn from Hirn) .. 162
Figs. 388 and 389. Oe. rhodosporum (Welw.) Wittr. (Redrawn from Hirn) ... 162
Figs. 390 and 391. Oe. montagnei Fior.-Mazz. (Redrawn from Hirn) .. 162
Figs. 392 and 393. Oe. pluviale Nord. (Redrawn from Hirn) ... 150
Fig. 394. Oe. flexuosum Hirn. (Redrawn from Hirn) ... 163
Fig. 395. Oe. pilosporum West. (Redrawn from West) ... 165
Fig. 396. Oe. consociatum Collins and Hervey. (Redrawn from Collins) ... 167
Fig. 397. Oe. inclusum Hirn. (Redrawn from Hirn) ... 169
PLATE XLI.

Figs. 398 and 399. *Oedogonium velatum* Hallas. (Redrawn from Hallas)......164
Figs. 400 and 401. *Oe. implexum* Hirn. (Redrawn from Hirn).................153
Fig. 402. *Oe. fonticola* Al. Br. (Redrawn from Hirn).........................163
Figs. 403-405. *Oe. spectabile* Hirn. (Redrawn from Hirn)....................153
Fig. 406. *Oe. reinschii* Roy..172

230
Fig. 407. *Oedogonium undulatum* (Breb.) Al. Br.; Wittr. (Redrawn from Hirn) .. 118
Fig. 408. *Oe. undulatum v. americanum* Trans .. 119
Fig. 409. *Oe. undulatum f. senegalense* (Nord.) Hirn ... 119
Figs. 410-413. *Oe. nebraskense* Ohashi (slightly on larger scale) 119
PLATE XLIII.

Fig. 414. Oedogonium hystricinum Transeau and Tiffany.......................... 120
Fig. 415. Oe. armigerum Hirn. (Redrawn from Hirn).......................... 133
Fig. 416. Oe. aster Wittr. (Redrawn from Hirn).......................... 120
Fig. 417. Oe. hystrix Wittr. (After Wittrock).......................... 120
Fig. 418. Oe. hystrix v. canadense Tiffany.......................... 121
Fig. 419. Oe. hystrix v. subglobosum Wittr. (After Wittrock).......................... 121
Figs. 420 and 421. Oe. echinospermum Al. Br.......................... 121
Fig. 422. Oe. echinospermum v. horridum Hirn. (After Wolle).......................... 122

Page 232
PLATE XLIV.

Figs. 423 and 424. *Oedogonium pungens* Hirn. (Redrawn from Hirn). .. 122
Figs. 425 and 426. *Oe. exospirale* Tiffany. 122
Figs. 427 and 428. *Oe. spirale* Hirn. (Redrawn from Hirn). 123
Fig. 429. *Oe. spirale* v. *latviense* Tiffany 123
Fig. 430. *Oe. spirale* v. *acutum* West and West. (Redrawn from West)... 123
Figs. 431-433. *Oe. illinoisense* Transeau (Redrawn from Transeau) 123

233
PLATE XLV.

Figs. 434 and 435. Oedogonium lindmanianum Wittr. (Redrawn from Hirn). 133
Fig. 436. Oe. echinatum (Wood) Wittr. Oospore. (After Wood) 133
Fig. 437. Oe. donnellii Wolle; Hirn. (Redrawn from Hirn) 132
Figs. 438 and 439. Oe. donnellii v. wittrockianum Hirn. (Redrawn from Hirn) 132
Fig. 440. Oe. hispidum Nordst. (Redrawn from Hirn) 137
Fig. 441. Oe. stellatum Wittr. (Redrawn from Hirn) 127
Fig. 442. Oedogonium manschuricum Skvortzow. (After Skvortzow) 126
Fig. 443. Oe. cleveanum Wittr. (A, antheridium; S, dwarf male stipe) 138
Fig. 444. Oe. cleveanum Wittr. (Redrawn from Hirn) 138
Fig. 445. Oe. semiapertum Nord. and Hirn. (Redrawn from Hirn) 124
Fig. 446. Oe. depressum Pringsh. (Redrawn from Hirn) 124
Fig. 447. Oe. irregulare Wittr 131
Fig. 448 and 449. Oe. irregulare v. condensatum (Hallas) Hirn. (After Hallas) 132
Figs. 450 and 451. Oe. multisporum Wood 131
Fig. 452. Oe. multisporum v. magnum Ackley 131

235
Fig. 453. Oedogonium gallicum Hirn. (Redrawn from Hirn)............. 124
Fig. 454. Oe. sexangulare Cleve .. 126
Figs. 455 and 456. Oe. sexangulare v. angulosum (Hallas) Hirn. (After Hallas) .. 126
Fig. 457. Oe. sexangulare v. majus Wille. (Redrawn from Hirn) 127
Fig. 458. Oe. braunii Kuetz; Pringsh.. 125
Fig. 459. Oe. braunii v. zehneri Tiffany.................................... 125
Figs. 460–462. Oe. braunii v. hafniense (Hallas) Hirn. (After Hallas) ... 125

236
Fig. 463. *Oedogonium alternans* Wittr. and Lund. (Redrawn from Hirn)......128
Fig. 464. *Oe. contortum* Hallas. (After Hallas).................................147
Figs. 465-468. *Oe. huntii* Wood. (After Wood).................................137
Fig. 469. *Oe. borisianum* (Le Cl.) Wittr..128
Fig. 470. *Oe. borisianum* v. *westii* Tiffany and Brown.......................128
Fig. 471. Oedogonium flavescens (Hass.) Wittr. .. 125
Fig. 472. Oe. silvaticum Hallas. (After Hallas) 127
Fig. 473. Oe. victoriense G. S. West. (After West) 129
Fig. 474. Oe. crassiusculum Wittr ... 129
Figs. 475 and 476. Oe. crassiusculum v. idioandrosporum Nord. and Wittr. 130
Fig. 477. Oe. crassiusculum v. cataractum (Wolle) Tiffany 130
PLATE L.

Fig. 478. Oedogonium crassiusculum v. arechavaletae (Wittr.) Hirn.
(Redrawn from Hirn) .. 130
Figs. 479 and 480. Oe. wolleanum Wittr. (Redrawn from Hirn) 135
Fig. 481. Oe. wolleanum v. concinnum Hirn. (Redrawn from Hirn) . 135
Figs. 482 and 483. Oe. wolleanum f. insigne (Nord.) Hirn. (Redrawn from Hirn) .. 136

Page

239
PLATE LI.

Figs. 484 and 485. Oedogonium cyathigerum Wittr. ... 133
Figs. 486 and 487. Oe. cyathigerum f. perfectum Hirn. (Redrawn from Hirn) ... 134
Figs. 488-490. Oe. cyathigerum f. ornatum (Wittr.) Hirn. (Redrawn from Hirn) .. 134

Page 240
Figs. 491 and 492. *Oe. cyathigerum v. hormosporum* (West) Hirn. (Redrawn from Hirn) .. 135
Fig. 493. *Oe. cyathigerum v. ellipticum* M. and W. (Redrawn from Hirn) .. 134
Fig. 494. *Oe. concatenatum* (Hass.) Wittr. .. 136
Fig. 495. *Oe. concatenatum f. hutchinsiae* (Wittr.) Hirn. .. 136
PLATE LIII.

Figs. 496 and 497. *Oedogonium concatenatum* var. *rectangulare* Rich. (After Rich) .. 137

- Figs. 498 and 499. *Oe. elegans* West and West. (After West) .. 138

Fig. 500. *Oe. areschougii* Wittr. (After Wittrock) .. 140

Fig. 501. *Oe. areschougii* var. *americanum* Tiffany .. 140

Figs. 502 and 503. *Oe. areschougii* f. *robustum* Hirn. (Redrawn from Hirn) .. 140

Figs. 504 and 505. *Oe. bengalense* Hirn. (Redrawn from Hirn) .. 139

Figs. 506 and 507. *Oe. rigidum* Hirn. (Redrawn from Hirn) .. 139

Page 242
PLATE LIV.

Fig. 508. Oedogonium brasiliense Borge. (Redrawn from Hirn) 140
Fig. 509. Oe. indicum Hirn. (Redrawn from Hirn) 139
Fig. 510. Oe. confertum Hirn. (Redrawn from Hirn) 141
Fig. 511. Oe. perspicuum Hirn. (Redrawn from Hirn) 141
Figs. 512 and 513. Oe. clavatum Hallas. (After Hallas) 141
Fig. 514. Oe. mirandrium Skuja. (After Skuja) 147
Fig. 515. Oe. danicum Hallas. (After Hallas) 145

Page 243
Figs. 516 and 517. Oedogonium longicolle Nord.; Hirn. (After Nordstedt) 144
Figs. 518 and 519. Oe. longicolle v. senegalense Nord. (After Nordstedt) 144
Fig. 520. Oe. decipiens Wittr. (After Wittrock) 145
Figs. 521 and 522. Oe. decipiens f. dissimile Hirn. 145
Figs. 523 and 524. Oe. decipiens v. africanum Tiffany. (Redrawn from Hirn) 145
Fig. 525. Oe. decipiens v. bernardense (Bates) Hirn. (Redrawn from Hirn) 146
Fig. 526. Oe. rothii (Le Cl.) Pringsh. (After Pringsheim) 144
Figs. 527 and 528. Oe. macrospermum West and West 146
Fig. 529. Oe. uleanum Hirn. (Redrawn from Hirn) 170
Fig. 530. Oe. bahusiense Nordst. (After Nordstedt) 142
Fig. 531. Oe. bahusiense Nordst., oogonium seen from above 142

244
Figs. 532 and 533. Oedogonium crenulatum Wittr. (After Wittrock) 171
Fig. 534. Oe. crenulatum v. gracillus (Nord.) Hirn. (Redrawn from Hirn) 171
Fig. 535. Oe. plicatum Wittr. (Redrawn from Hirn) 170
Figs. 536-538. Oe. lagerstedtii Wittr. (Redrawn from Hirn) 170
Fig. 539. Oe. oelandicum Wittr.; Hirn ... 142
Fig. 540. Oe. oelandicum f. minus Borge. (Redrawn from Borge) 142
Fig. 541. Oe. pulchrum Nord. and Hirn. (Redrawn from Hirn) 170
Fig. 542. Oe. boreale Hirn. (Redrawn from Hirn) 147
Fig. 543. Oe. megaporum Wittr. ... 142
Fig. 544. Oe. platygynum Wittr. (After Wittrock) 143
Fig. 545. Oe. platygynum f. obtusum Hirn. (Redrawn from Hirn) 143
Fig. 546. Oe. platygynum v. continuum Nordst. (After Nordstedt) 143
Fig. 547. Oe. platygynum v. novae zelandiae Hirn. (After Nordstedt) 144
Fig. 548. Oe. costatum Transeau .. 146
(Figs. 533, 537, 541, 544 show also oogonia in optical section seen from above.)
PLATE LVII.

Fig. 549. Oedogonium macrandrium Wittr................................. 151
Fig. 550. Oe. macrandrium f. acuminatum Hirn. (Redrawn from Hirn)........ 151
Fig. 551. Oe. macrandrium f. aemulans Hirn. (Redrawn from Hirn)........ 151
Fig. 552. Oe. macrandrium f. lundense (Wittr.) Hirn. (Redrawn from Hirn)........ 151
Fig. 553. Oe. macrandrium v. propinquum (Wittr.) Hirn........................ 152
Figs. 554-556. Oe. macrandrium v. hohenackerii (Wittr.) Tiffany.............. 152
Fig. 557. Oe. macrandrium v. scrobiculatum Ackley. (Redrawn from Ackley)........ 152
Fig. 558. Oe. laetevirens Wittr. (Redrawn from Hirn)......................... 150
Fig. 559. Oe. hoersholmiense Hallas. (Redrawn from Hallas).................. 150

246
PLATE LVIII.

Fig. 560. Oedogonium rugulosum Nordst..................148
Fig. 561. Oe. rugulosum f. minutum (Hansg.) Hirm. (Redrawn from Hirm) 149
Fig. 562. Oe. rugulosum f. rotundatum Hirm. (Redrawn from Hirm) 149
Fig. 563. Oe. longatum Kuetz...148
Figs. 564 and 565. Oe. monile Berk. and Harv. (Redrawn from Hirm) 154
Fig. 566. Oe. monile f. victoriense G. S. West. (After West) 154
Fig. 567. Oe. monile f. borgei Hirm. (Redrawn from Hirm) 154
Figs. 568 and 569. Oe. monile v. eminens Hirm. (Redrawn from Hirm) 154
Figs. 570 and 571. Oe. hians Nord. and Hirm. (Redrawn from Hirm) 140
Fig. 572. Oe. schmidlei Gutw. (After Gutwinski) 148

Page

247
PLATE LIX.

Figs. 573-576. Oedogonium supremum Tiffany...156
Fig. 577. Oe. obtruncatum Wittr...155
Fig. 578. Oe. obtruncatum v. ellipsoideum Wittr. (Redrawn from Hirn).......155
Figs. 579-582. Oe. obtruncatum v. completum Hirn. (Redrawn from Hirn)...155
Fig. 583. Oe. ciliatum (Hass.) Pringsh...153
Figs. 584 and 585. **Oedogonium wabashense** Tiffany

Figs. 586-588. **Oe. praticolum** Transeau

Fig. 589. **Oe. acrosorum** De Bary

Fig. 590. **Oe. acrosorum f. boreale** (Wolle) Hirn. (After Wolle)

Fig. 591. **Oe. acrosorum v. majusculum** Nordst. (After Hirn)

Fig. 592. **Oe. acrosorum v. bathmidosporum** (Nord.) Hirn. (After Hirn)

Fig. 593. **Oe. acrosorum v. floridense** Wolle. (After Wolle)
Figs. 594-596. Oedogonium michiganense Tiffany..................................157
Fig. 597. Oe. tentoriale Nordst. and Hirn..157
Figs. 598-600. Vegetative cell of Oe. crassiusculum Wittr. v. idioandro-
sporum N. and W. showing cell division and formation of apical cap.....130
Figs. 601 and 602. Oedocladium media Lewis. (After Lewis)..............52
Fig. 603. Oedocladium media Lewis, habit sketch. (After Lewis).........52

250
Figs. 604-608. *Oedocladium hazenii* Lewis, showing habit and reproductive structures. Fig. 606, escape of androspores from androsporangia. (After Lewis).

Figs. 609-611. *Oedocladium hazenii* Lewis, stages in the germination of a zoospore. (After Lewis).

Fig. 612. *Oedocladium hazenii* Lewis, sporeling. (After Lewis). (R, rhizoidal cell; G, green cell of vegetative filament).

Page 251
Plate LXIII.

Figs. 613–615. *Oedocladium albemarlensis* Lewis. (After Lewis) 51
Figs. 616–618. *O. albemarlensis* Lewis. Stages in cell division and branching. 51
Fig. 619. *Oedocladium protonema* Stahl. Habit sketch, showing vegetative and rhizoidal cells, the latter with two resting cells. (Redrawn from Stahl.) 51
Figs. 620 and 621. *O. protonema* Stahl. Male and female branches. (Redrawn from Stahl) .. 51
Fig. 622. *O. protonema* Stahl. Part of filament with three side branches. (Redrawn from Stahl) ... 51
Fig. 623. *O. protonema* Stahl. Sporeling. (Redrawn from Stahl). (G, cell of green filament; R, rhizoidal cell) ... 51

252
Figs. 624-630. Different positions of operculum in operculate oogonia of Oedogonium. 624, supreme; 625, superior; 626, supramedian; 627, median; 628, inframedian; 629, inferior; 630, infimus (basal).

Figs. 631-635. Different positions of pore in poriferous oogonia of Oedogonium. 631, superior; 632, supramedian; 633 and 634, median; 635, inferior.

Fig. 636. Subhemispherical basal cell of Oedogonium.

Fig. 637. Elongated type of basal cell of Oedogonium.

Fig. 638. Formation of oogonium O and suffultory cell S from a division of a vegetative cell, in Oedogonium.

Figs. 639 and 640. Suffultory cells of Oedogonium.

Figs. 641-645. Formation of oogonium in Bulbochaete. OO, young oogonium; PO, patent oogonium; EO, erect oogonium; US, upper suffultory cell; LS, lower suffultory cell; D, dwarf male with antheridium; A, androsporangium.

Figs. 646 and 647. Development of 4 zoospores from germinating oospore. (After Juranyi.)