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Astrodynamics is defined in terms of celestial
mechanics and of space navigation in its broadest
sense: pre-Sputnik, including orbit determination
and correction, as well as post-Sputnik, which adds
control and optimization.

Basically there are three areas of celestial me-
chanics:

1. Mathematical celestial mechanics is concerned
with the existence of solutions to defined and re-
stricted problems in celestial mechanics. It prefers
methods that have generality in the sense that they
are applicable to other fields of mechanics as well
as to a range of problems in celestial mechanics.
But these methods tend to be restricted to a given
type of problem: e.g., the elegant potential and
Hamiltonian methods are limited to conservative
and quasi-conservative forces.

2. Physical celestial mechanics is concerned pri-
marily with the use of celestial mechanics in the
determination of physical constants that are of
interest to other areas of physics, especially geo-
physics and astrophysics.

8. Astrodynamics, as we term the third area of
celestial mechanics, is greatly interested in physical
constants, but also in all other factors that con-
tribute to accurate space navigation, such as inte-
gration constants, integration procedures, singulari-
ties, and indeterminacies. Astrodynamics makes
fundamental use of the general methods of mathe-
matical celestial mechanics, and also of special
methods that fit particular real problems. But
whereas mathematical celestial mechanics tends to
pursue one solution to a conclusion, with maximum
use of a particular class of elegant mathematical
tools, astrodynamics seeks to develop all possible
solutions for purposes of comparison and selection.
Mathematical celestial mechanics is concerned with
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ideal problems involving motion in a theoretically
simple framework; astrodynamics is concerned with
fitting a theory to observation and to the coordinate
systems of the real world, and so is concerned with
precession, nutation, aberration, parallax, the re-
duction of observations (electronic as well as opti-
cal), and with all the force fields that are encoun-
tered in real problems. General methods and tools
(e.g., the method of least squares and Bessel’s func-
tions) have often come out of the particular solu-
tions of these real problems.

No “celestial mechanic” devotes himself ex-
clusively to one of these areas, but his heart is
likely to be in one of them, and his judgement less
than clairvoyant in the others. I shall indicate some
of the differences between the areas and their meth-
ods in the following discussions of the historical
development of astrodynamics before 1940.

My own serious concern with astrodynamics and
space navigation began when I was an undergradu-
ate student at Williams College. Four letters from
Dr. Robert H. Goddard survive to attest to my plan
for graduate study in the area, to Dr. Goddard’s
encouragement, and to his kindliness in taking time
to give it even when his own prospects were bleak.
I quote from two paragraphs of one of his letters,
dated 15 June 1932:

. owing to the depression, the rocket project is being
discontinued July first, and the matter of its being resumed
later is an uncertain one.

I cannot help feeling that a theoretical investigation such
as you mention has advantages over experimentation during
such times as these

These letters encouraged me to proceed to graduate
study under Armin Otto Leuschner, Russell Tracy
Crawford, and C. Donald Shane, at Berkeley, where
I developed a thoroughgoing devotion to celestial
mechanics as well as to space navigation.
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Early History Illuminates the Character of
Astrodynamics

Physical celestial mechanics may be said to have
begun with Galileo Galilei, Isaac Newton, and the
laws of force and gravitation. Astrodynamics and
mathematical celestial mechanics, on the other
hand, date back at least to Heracleides of Pontus in
the fourth century B.C. The Greek invention of
epicycles and eccentrics was developed into a system
by Apollonius of Perga in the third century and
Hipparchus of Alexandria in the second century
B.C. It was refined and published by Ptolemy of
Alexandria in the second century A.D., and came to
be known as the Ptolemaic system. It is generally
assumed that the epicycle was discredited by Jo-
hannes Kepler some 1500 years later, but in point
of fact epicycles have persisted in astrodynamics
down to the present day, and have extended their
domain into other areas of science under the guise
of Fourier series!

Hindsight is a valuable tool in the history of
science and serves to illuminate on the one hand
the contemporary understanding and acceptance of
an idea, and, on the other, its clarity and persistence.
The historian of science is likely to emphasize the
former; the scientist himself is understandably
more interested in the latter.

My own hindsight theory has been presented to
my students over the past 20 years, and by them
conveyed to others, but for the most part it has
remained unpublished in the conventional sense
(except in preprints of my reference work Astro-
dynamics ). Basically it asserts that history has been
unjust to epicycles, and even to Nicolaus Coper-
nicus. (Some historians have gone so far as to say
that the system of Copernicus was just as cumber-
some as the Ptolemaic system, and that Kepler
was the real author of our modern heliocentric
theory.)

With hindsight we can see that there are in a
planet’s motion three kinds of deviation from uni-
formity that confronted the Greeks and their suc-
cessors, and required explanation by a ‘‘system”
such as the Ptolemaic or the Copernican:

1. The annual or Copernican or retrograde de-
viation, caused by the motion of the Earth around
the Sun.

2. The elliptic or Keplerian deviation, explained
in simple two-body motion by the discovery that
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FIGURE 1.—a, Ptolemaic, b, Copernican, and ¢, Keplerian
systems.

the relative orbit of the two bodies is an ellipse or
other conic section.

3. The perturbed or Newtonian deviations,
caused by the attractions of the planets and their
satellites for one another.

The Ptolemaic system explained all of these de-
viations by geocentric deferents surmounted by
epicycles piled upon epicycles (see Figure 1, in
which the largest epicycle is the annual one, the
second represents the elliptic ones, and the smallest
represents the perturbed-deviation epicycles).

Aristarchus of Samos, and later Copernicus,
eliminated the first deviation by shifting the center
of the system from the Earth to the Sun, but the
remaining deviations of the Copernican system still
had to be accounted for by epicycles. It is this fact
that led to the dictum that the Copernican system
is “‘just about as complicated as the Ptolemaic sys-
tem.” It may have appeared so to contemporary
eyes, but in retrospect it is clear that the elimina-
tion of the five annual planetary epicycles—that is,
one epicycle for each of the five known planets,
the total “population’” as of that time—was a major
simplification of the mechanics of the system, so
that Copernicus unquestionably deserves the popu-
lar recognition accorded his name.

Kepler accounted for the second class of deviation
by his perspicuous laws of planetary motion. It is
this fact that has generally been credited with the
destruction of the epicycle as a mechanical device.
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But it should be recognized that there were per-
turbed deviations still unaccounted for in the Kep-
lerian system. These deviations are most conspicu-
ous in the motion of the Moon around the Earth,
but the observations of Kepler’s time were suffi-
ciently accurate to show evidence also of the mutual
perturbations of Jupiter and Saturn. When New-
ton’s development of the law of gravitation made
it possible to explain these perturbed deviations by
mechanical means, the epicycles that had survived
Kepler’s onslaught were adopted into Newtonian
mechanics. As a matter of fact, the basic epicyclic
theory re-expanded to include even the elliptic
deviations, thus rejecting the Keplerian system in
favor of the Copernican system, whose handling of
the elliptic terms by systems of epicycles (rechris-
tened “Fourier series”) proves to be simpler than
the use of expressions in terms of Keplerian ellipses.
In a sense this development may be noted as
realistic astrodynamic replacement for a theoretical
mathematical formulation.

We may note that Fourier series, with arguments
that are multiples of a single angle, are less flexible
than the original “astrodynamic” concept of epi-
cycles, in which noncommensurate arguments are
used: consider, for example, the representation of
the geocentric motion of Venus, assuming that
Venus and Earth are both travelling in circular
heliocentric orbits. The Ptolemaic development
would require only one epicycle; the Fourier devel-
opment would require a theoretically infinite num-
ber of terms or epicycles. In modern perturbation
theory we actually take account of the original
epicyclic concept by combining several Fourier
series that have arguments based upon different
angular variables.

Astrodynamics Illuminated by Modern
Treatment of Parallax

Recent developments in the treatment of geo-
centric parallax illustrate the importance to astro-
dynamics of physically real reference systems, and
of the reduction of observations, as contrasted with
developments in mathematical celestial mechanics,
in which the reference system is idealized and ob-
servations are only theoretically taken into account.

Figure 2 shows how geocentric parallax enters
into the observations. The position of the Sun is
designated by S, that of the observed object by the
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Ficure 2.—Effect of geocentric parallax on observations.

cometary symbol “c#”, the center of the Earth by E,
and the observer by T (for Greek topos, place, and
for the adjective topocentric). The dynamical posi-
tion of ¢ is defined by the vector r (i.e., the line
segment of S&). The position of the Sun referred to
the center of the Earth is specified conventionally
by the “solar coordinates” that are given in astro-
nomical almanacs, i.e., by the vector R (in the
figure, ES). The geocentric position of the observer
is specified by 7, (ET). Finally the topocentric posi-
tion of the comet is specified by the vector p, which
represents the topocentric distance (today the
“range”) p, right ascension ¢, and declination §.

Classically the topocentric right ascension and
declination are corrected for geocentric parallax to
what they would have been had the observation
been made from the center of the Earth, so that we
have a single triangle relating E, S, and ¢&. In some
problems there is still justification for such a pro-
cedure, but in preliminary orbit calculations based
upon observations of ¢ and § the parallax can be
calculated only after a first approximation has
given a value of p. Successive approximations of
this character were standard practice in orbit deter-
mination for a great many years more than should
have been the case! There were clumsy experiments
with the “locus fictus” which is shown in Figure 2
as the intersection of the line of T'¢# with the line
ES. When Gibbs became interested in the orbit
problem (1889),2 largely in connection with his
development of vector analysis, he was fortunately
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ignorant of astronomical practice. Consequently he
decided very simply to correct the solar coordinates
or the vector R from the center of the earth to the
observer, at the start of the problem, by subtracting
the known vector 74, thus replacing the triangle
ES % by the triangle TS We find in the literature
that this thought had occurred previously to Challis
(1848),3 and possibly to Leverrier (1855),* but had
not taken hold. In fact astronomers were slow to
adopt Gibbs’ simple solution to the parallax prob-
lem until the much more recent contributions of
Bower (1922, 1932),° Merton (1925),° Rasmusen
(1951),” and others.

My own contribution to revised thinking in this
area is associated with my work on my thesis® in
1935 and 1936 and with a mathematically oriented
contribution of Poincaré (1906).°

Poincaré had suggested a “second approximation”
for the Laplacian method of determining orbits. In
the Laplacian method three observations of ¢ and 8§
are numerically differentiated in order to produce
velocities and accelerations in these angular coordi-
nates (see Figure 3). The numerical differentiation
ignores the higher derivatives in the first approxi-
mation, and it was these that Poincaré aimed to
restore in his “‘second approximation.” The Lap-
lacian solution usually involves an assumption that
the observer is travelling in a two-body orbit, and
this assumption was uncritically accepted by Poin-
caré. But it is not the observer (T in Figure 3) who
travels in a two-body orbit, nor is it even the center
of the Earth (E in Figure 3) but (to a high degree
of approximation) it is the barycenter of the Earth-
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FiGure 3.—Illustration of real problems of orbit deter-
mination,
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Moon system (B in Figure 3). Williams (1934) 1°
attempted to make the Poincaré method work by
correcting for geocentric parallax, but found that
barycentric parallax ultimately prevented the proc-
ess from converging. He did not attempt to apply
Leuschner’s (1913) * technique for complete elim-
ination of parallax. William’s work came to my
attention when I was writing my thesis.

In reviewing the matter I became aware that the
“motion of the observer” has nothing whatsoever
to do with the problem, but is only a mathematical
fiction: the “observer” may actually be three differ-
ent observers at three different observatories. Con-
sequently I decided to assume that this fictitious
motion is determined by the real motion of the
object and by the further assumption that the
higher derivatives of the observed angular coordi-
nates were zero. These assumptions made it possible
to carry the “second approximation of Poincaré” to
a successful “real” conclusion.

These assumptions also made it possible to relate
the basic first approximation of the Laplacian
methods exactly to the first approximation in the
methods of Gauss,’? Lagrange,’* and Gibbs,* a
relationship that is necessary to the development
of criteria for the selection of method in “real”
problems of orbit determination.

Linearization in Astrodynamics

One of the issues in astrodynamics that is still
unresolved nearly three decades after 1939 is the
use of linear methods in astrodynamics. Many linear
methods based upon the work of Poincaré have
been brought back into celestial mechanics without
realization on the part of Poincaré or his successors
that non-linear solutions to the problems considered
not only exist, but have been in constant use! Never-
theless some of the ideas have been provocative, and
newer uses may be found for them.

It seems clear at present that linear methods may
be used after a basic non-linear integration is com-
plete, especially to obtain partial derivatives, but
that their use in the basic integration is suspect,
and may be either erroneous or unnecessary or both.

The basic geometrical equation used in the com-
parison of a theory with observations is certainly
in a category for which linearization is allowable,
and I find that Stumpff (1931) 25 and I (1940) ¢
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were experimenting in the use linear combinations
of the residuals before 1940. The equation is

COSs & COS ¢
L=!cos § sin ¢
sin §

pL=p=T+R

where r is SE in Figure 2 and R has been corrected
from ES to TS as discussed above.

Stumpff had already proposed the use of residuals
in two of the ratios between the three components
of L, selected according to size, when I, having
proposed residuals in the interdependent compo-
nents themselves, realized the equivalence of the
two proposals. Essentially their aim was the avoid-
ance of successive trigonometric recalculations of
o and § in comparisons of successive theories with
the observations.

The basic Stumpff concept, I found, could be
extended to residuals in p or 7 or even to the “ratios
of the triangles” used in preliminary orbit deter-
minations by the methods of Lagrange, Gauss, and
Gibbs.

Series Expansions

Preliminary orbit determination, perturbation
theory, correction theory, all make effective use of
series expansions of many kinds. The use of Fourier
series (or epicycles) has been remarked upon in the
foregoing. Power series now almost universally
called the “f and g series” were developed by
Lagrange (1783) ** for the equations

7;=firo+&jito

and from the series for j=1, 3 (with 0 replaced by
2) were developed the series for the “ratios of the
triangles” referred to above. Gibbs (1889) 18 reex-
amined these expansions with his usual clear-sight-
edness and contributed new expressions for the
“ratios” that have been the most generally recog-
nized of his contributions to orbit theory. Happily,
he left for me (1940) the extension of his develop-
ments to companion expressions, even simpler, for
the determination of velocity components from
three sets of position components.® These expres-
sions have made the Lagrangian method for deter-
mining a preliminary orbit as effective as the
Gaussian, but simpler. They enter also into orbit
determinations that involve modern electronic ob-
‘servations of ‘‘range-rate.”
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In Conclusion

The foregoing remarks have been designed to
give not a complete history of the pre-1940 founda-
tions of astrodynamics, but rather samplings of
these foundations that reveal the character of the
subject, as it may be partially distinguished from
the more purely mathematical developments of
celestial mechanics. These samples nevertheless
demonstrate again that universal principles and
ideas tend to crop up independently in more than
one time or place, that their excellence depends
upon provability, and that they will be used when
the time is ripe if they are continuous from sound
antecedents.

Subsequent decades were to build enormously on
the pre-1940 foundations, and to expand them, in
conjunction with new instrumentation, with new
vehicles, and with searches for previously inaccessi-
ble physical constants or for greater accuracy in
relativity constants, the solar parallax, and other
basic data of value both to physics and to precision
space navigation.

NOTES

On 21 March 1974 Dr. Samuel Herrick Jr. died. His obitu-
ary was carried in The Washington Post of 25 March 1974.
—Ed.
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